Local and global bifurcations of food web model consists of immature and mature preys, first predator, and second predator with the current of toxicity and harvesting was studied. It is shown that a trans-critical bifurcation occurs at the equilibrium point
Global warming has a serious impact on the survival of organisms. Very few studies have considered the effect of global warming as a mathematical model. The effect of global warming on the carrying capacity of prey and predators has not been studied before. In this article, an ecological model describing the relationship between prey and predator and the effect of global warming on the carrying capacity of prey was studied. Moreover, the wind speed was considered an influencing factor in the predation process after developing the function that describes it. From a biological perspective, the nonnegativity and uniform bounded of all solutions for the model are proven. The existence of equilibria for the model and its local stability is inves
... Show MoreAn eco-epidemic model is proposed in this paper. It is assumed that there is a stage structure in prey and disease in predator. Existence, uniqueness and bounded-ness of the solution for the system are studied. The existence of each possible steady state points is discussed. The local condition for stability near each steady state point is investigated. Finally, global dynamics of the proposed model is studied numerically.
The avoidance strategy of prey to predation and the predation strategy for predators are important topics in evolutionary biology. Both prey and predators adjust their behaviors in order to obtain the maximal benefits and to raise their biomass for each. Therefore, this paper is aimed at studying the impact of prey’s fear and group defense against predation on the dynamics of the food-web model. Consequently, in this paper, a mathematical model that describes a tritrophic Leslie-Gower food-web system is formulated. Sokol-Howell type of function response is adapted to describe the predation process due to the prey’s group defensive capability. The effects of fear due to the predation process are considered in the first two levels
... Show MoreThe aim of this work is to study a modified version of the four-dimensional Lotka-Volterra model. In this model, all of the four species grow logistically. This model has at most sixteen possible equilibrium points. Five of them always exist without any restriction on the parameters of the model, while the existence of the other points is subject to the fulfillment of some necessary and sufficient conditions. Eight of the points of equilibrium are unstable and the rest are locally asymptotically stable under certain conditions, In addition, a basin of attraction found for each point that can be asymptotically locally stable. Conditions are provided to ensure that all solutions are bounded. Finally, numerical simulations are given to veri
... Show MoreIn this paper an eco-epidemiological system has been proposed and studied analytically as well as numerically. The boundedness, existence and uniqueness of the solution are discussed. The local and global stability of all possible equilibrium point are investigated. The global dynamics is studied numerically. It is obtained that system has rich in dynamics including Hopf bifurcation.
In this paper a mathematical model that describes the flow of infectious disease in a population is proposed and studied. It is assumed that the disease divided the population into four classes: susceptible individuals (S), vaccinated individuals (V), infected individuals (I) and recover individuals (R). The impact of immigrants, vaccine and external sources of disease, on the dynamics of SVIRS epidemic model is studied. The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of the model is studied. The occurrence of local bifurcation as well as Hopf bifurcation in the model is investigated. Finally the global dynamics of the proposed model is studied numerically.
In this paper, a Cholera epidemic model is proposed and studied analytically as well as numerically. It is assumed that the disease is transmitted by contact with Vibrio cholerae and infected person according to dose-response function. However, the saturated treatment function is used to describe the recovery process. Moreover, the vaccine against the disease is assumed to be utterly ineffective. The existence, uniqueness and boundedness of the solution of the proposed model are discussed. All possible equilibrium points and the basic reproduction number are determined. The local stability and persistence conditions are established. Lyapunov method and the second additive compound matrix are used to study the global stability of the system.
... Show MoreThis study has contributed to understanding a delayed prey-predator system involving cannibalism. The system is assumed to use the Holling type II functional response to describe the consuming process and incorporates the predator’s refuge against the cannibalism process. The characteristics of the solution are discussed. All potential equilibrium points have been identified. All equilibrium points’ local stability analyses for all time delay values are investigated. The system exhibits a Hopf bifurcation at the coexistence equilibrium, which is further demonstrated. The center manifold and normal form theorems for functional differential equations are then used to establish the direction of Hopf bifurcation and the stability of the per
... Show MoreIn this paper, we establish the conditions of the occurrence of the local bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium points of an eco-epidemiological model consisting of a prey-predator model with SI (susceptible-infected) epidemic diseases in prey population only and a refuge-stage structure in the predators. It is observed that there is a transcritical bifurcation near the axial and free predator equilibrium points, near disease-free equilibrium point is a saddle-node bifurcation and near positive (coexistence) equilibrium point is a saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation. Further investigations for Hopf bifurcation near coexistence equilibrium point are
... Show MoreIn this paper, we establish the conditions of the occurrence of the local bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium points of an eco-epidemiological model consisting of a prey-predator model with SI (susceptible-infected) epidemic diseases in prey population only and a refuge-stage structure in the predators. It is observed that there is a transcritical bifurcation near the axial and free predator equilibrium points, near disease-free equilibrium point is a saddle-node bifurcation and near positive (coexistence) equilibrium point is a saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation. Further investigations for Hopf bifurcation near coexistence equilibrium point
... Show More