Local and global bifurcations of food web model consists of immature and mature preys, first predator, and second predator with the current of toxicity and harvesting was studied. It is shown that a trans-critical bifurcation occurs at the equilibrium point
In this study, a three-dimensional finite element analysis using ANSYS 12.1 program had been employed to simulate simply supported reinforced concrete (RC) T-beams with multiple web circular openings subjected to an impact loading. Three design parameters were considered, including size, location and number of the web openings. Twelve models of simply supported RC T-beams were subjected to one point of transient (impact) loading at mid span. Beams were simulated and analysis results were obtained in terms of mid span deflection-time histories and compared with the results of the solid reference one. The maximum mid span deflection is an important index for evaluating damage levels of the RC beams subjected to impact loading. Three experi
... Show MoreThe analysis of the hyperlink structure of the web has led to significant improvements in web information retrieval. This survey study evaluates and analyzes relevant research publications on link analysis in web information retrieval utilizing diverse methods. These factors include the research year, the aims of the research article, the algorithms utilized to complete their study, and the findings received after using the algorithms. The findings revealed that Page Rank, Weighted Page Rank, and Weighted Page Content Rank are extensively employed by academics to properly analyze hyperlinks in web information retrieval. Finally, this paper analyzes the previous studies.
This study presents a mathematical model describing the interaction of gut bacteria in the participation of probiotics and antibiotics, assuming that some good bacteria become harmful through mutations due to antibiotic exposure. The qualitative analysis exposes twelve equilibrium points, such as a good-bacteria equilibrium, a bad-bacteria equilibrium, and a coexisting endemic equilibrium in which both bacteria exist while being exposed to antibiotics. The theory of the Sotomayor theorem is applied to study the local bifurcation around all possible equilibrium points. It’s noticed that the transcritical and saddle-node bifurcation could occur near some of the system’s equilibrium points, while pitchfork bifurcation cannot be accrued at
... Show MoreTaking into account the significance of food chains in the environment, it demonstrates the interdependence of all living things and has economic implications for people. Hunting cooperation, fear, and intraspecific competition are all included in a food chain model that has been developed and researched. The study tries to comprehend how these elements affect the behavior of species along the food chain. We first examined the suggested model's solution properties before calculating every potential equilibrium point and examining the stability and bifurcation nearby. We have identified the factors that guarantee the global stability of the positive equilibrium point using the geometric approach. Additionally, the circumstances that would gu
... Show MoreIn this paper, chaotic and periodic dynamics in a hybrid food chain system with Holling type IV and Lotka-Volterra responses are discussed. The system is observed to be dissipative. The global stability of the equilibrium points is analyzed using Routh-Hurwitz criterion and Lyapunov direct method. Chaos phenomena is characterized by attractors and bifurcation diagram. The effect of the controlling parameter of the model is investigated theoretically and numerically.
This paper treats the interactions among four population species. The system includes one mutuality prey, one harvested prey and two predators. The four species interaction can be described as a food chain, where the first prey helps the second harvested prey. The first and the second predator attack the first and the second prey, respectively, according to Lotka-Volterra type functional responses. The model is formulated using differential equations. One equilibrium point of the model is found and analysed to reveal a threshold that will allow the coexistence of all species. All other equilibrium points of the system are located, with their local and global stability being assessed. To back up the conclusions of the mathema
... Show MoreIn this study, the spreading of the pandemic coronavirus disease (COVID-19) is formulated mathematically. The objective of this study is to stop or slow the spread of COVID-19. In fact, to stop the spread of COVID-19, the vaccine of the disease is needed. However, in the absence of the vaccine, people must have to obey curfew and social distancing and follow the media alert coverage rule. In order to maintain these alternative factors, we must obey the modeling rule. Therefore, the impact of curfew, media alert coverage, and social distance between the individuals on the outbreak of disease is considered. Five ordinary differential equations of the first-order are used to represent the model. The solution properties of the system ar
... Show MoreIn this paper a prey - predator model with harvesting on predator species with infectious disease in prey population only has been proposed and analyzed. Further, in this model, Holling type-IV functional response for the predation of susceptible prey and Lotka-Volterra functional response for the predation of infected prey as well as linear incidence rate for describing the transition of disease are used. Our aim is to study the effect of harvesting and disease on the dynamics of this model.