The main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
This paper is concerned with studying the numerical solution for the discrete classical optimal control problem (NSDCOCP) governed by a variable coefficients nonlinear hyperbolic boundary value problem (VCNLHBVP). The DSCOCP is solved by using the Galerkin finite element method (GFEM) for the space variable and implicit finite difference scheme (GFEM-IFDS) for the time variable to get the NS for the discrete weak form (DWF) and for the discrete adjoint weak form (DSAWF) While, the gradient projection method (GRPM), also called the gradient method (GRM), or the Frank Wolfe method (FRM) are used to minimize the discrete cost function (DCF) to find the DSCOC. Within these three methods, the Armijo step option (ARMSO) or the optimal step opt
... Show MoreThis paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
Journal of Physics: Conference Series PAPER • THE FOLLOWING ARTICLE ISOPEN ACCESS Estimate the Rate of Contamination in Baghdad Soils By Using Numerical Method Luma Naji Mohammed Tawfiq1, Nadia H Al-Noor2 and Taghreed H Al-Noor1 Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 1294, Issue 3 Citation Luma Naji Mohammed Tawfiq et al 2019 J. Phys.: Conf. Ser. 1294 032020 DOI 10.1088/1742-6596/1294/3/032020 DownloadArticle PDF References Download PDF 135 Total downloads 88 total citations on Dimensions. Turn on MathJax Share this article Share this content via email Share on Facebook (opens new window) Share on Twitter (opens new window) Share on Mendeley (opens new window) Hide article and author
... Show MoreIn this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
The aim of this paper is to evaluate the rate of contamination in soils by using accurate numerical method as a suitable tool to evaluate the concentration of heavy metals in soil. In particular, 2D –interpolation methods are applied in the models of the spread the metals in different direction.The paper illustrates the importance of the numerical method in different applications, especially nvironment contamination. Basically, there are many roles for approximating functions. Thus, the approximating of function namely the analytical expression may be expressed; the most common type being is polynomials, which are the easy implemented and simplest methods of approximation. In this paper the divided difference formula is used and extended
... Show MoreVolterra – Fredholm integral equations (VFIEs) have a massive interest from researchers recently. The current study suggests a collocation method for the mixed Volterra - Fredholm integral equations (MVFIEs)."A point interpolation collocation method is considered by combining the radial and polynomial basis functions using collocation points". The main purpose of the radial and polynomial basis functions is to overcome the singularity that could associate with the collocation methods. The obtained interpolation function passes through all Scattered Point in a domain and therefore, the Delta function property is the shape of the functions. The exact solution of selective solutions was compared with the results obtained
... Show More
Abstract
The use of modern scientific methods and techniques, is considered important topics to solve many of the problems which face some sector, including industrial, service and health. The researcher always intends to use modern methods characterized by accuracy, clarity and speed to reach the optimal solution and be easy at the same time in terms of understanding and application.
the research presented this comparison between the two methods of solution for linear fractional programming models which are linear transformation for Charnas & Cooper , and denominator function restriction method through applied on the oil heaters and gas cookers plant , where the show after reac
... Show MoreIn this work, the fractional damped Burger's equation (FDBE) formula = 0,