Preferred Language
Articles
/
8Ra3tIcBVTCNdQwCNlyk
Analytic and numerical solution for duffing equations
...Show More Authors

<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>

Crossref
View Publication
Publication Date
Sun Jun 23 2019
Journal Name
Journal Of The College Of Basic Education
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Fri Jun 23 2023
Journal Name
Journal The College Of Basic Education / Al-mustansiriyah University
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.

View Publication
Crossref (1)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Analytic and numerical solutions for linear and nonlinear multidimensional wave equations
...Show More Authors

View Publication
Crossref (8)
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
International Journal Of Pure And Apllied Mathematics
A SEMI ANALYTICAL ITERATIVE TECHNIQUE FOR SOLVING DUFFING EQUATIONS
...Show More Authors

View Publication
Crossref (10)
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Wang-Ball Polynomials for the Numerical Solution of Singular Ordinary Differential Equations
...Show More Authors

This paper presents a new numerical method for the solution of ordinary differential equations (ODE). The linear second-order equations considered herein are solved using operational matrices of Wang-Ball Polynomials. By the improvement of the operational matrix, the singularity of the ODE is removed, hence ensuring that a solution is obtained. In order to show the employability of the method, several problems were considered. The results indicate that the method is suitable to obtain accurate solutions.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Improved High order Euler Method for Numerical Solution of Initial value Time- Lag Differential Equations
...Show More Authors

The goal of this paper is to expose a new numerical method for solving initial value time-lag of delay differential equations by employing a high order improving formula of Euler method known as third order Euler method. Stability condition is discussed in detail for the proposed technique. Finally some examples are illustrated to verify the validity, efficiency and accuracy of the method.

View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Using Semi-Analytic Technique for Solving Lane Emden Equations
...Show More Authors

This paper propose the semi - analytic technique using two point osculatory interpolation to construct polynomial solution for solving some well-known classes of Lane-Emden type equations which are linear ordinary differential equations, and disusse the behavior of the solution in the neighborhood of the singular points along with its numerical approximation. Many examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.

View Publication Preview PDF
Publication Date
Sun Jul 01 2012
Journal Name
Baghdad University College Of Education Ibn Al-haitham
Numerical Solution of Linear System of Fredholm Integral Equations Using Haar Wavelet Method
...Show More Authors

The aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.

View Publication
Publication Date
Fri Feb 28 2020
Journal Name
Iraqi Journal Of Science
Numerical Solution for Two-Sided Stefan Problem
...Show More Authors

     In this paper, we consider a two-phase Stefan problem in one-dimensional space for parabolic heat equation with non-homogenous Dirichlet boundary condition. This problem contains a free boundary depending on time. Therefore, the shape of the problem is changing with time. To overcome this issue, we use a simple transformation to convert the free-boundary problem to a fixed-boundary problem. However, this transformation yields a complex and nonlinear parabolic equation. The resulting equation is solved by the finite difference method with Crank-Nicolson scheme which is unconditionally stable and second-order of accuracy in space and time. The numerical results show an excellent accuracy and stable solutions for tw

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A parallel Numerical Algorithm For Solving Some Fractional Integral Equations
...Show More Authors

In this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.

View Publication Preview PDF
Crossref (1)
Crossref