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Abstract. In this paper, the new approach to solve important type of partial differential 

equations based on (1+1) dimension was proposed. Analytical solitary wave combine with 

Adomain Decomposition method is suggested to get exact solution of nonlinear (1+1) 

dimension PDEs. Yields solution in rapid convergent series from easily computable terms to 

get exact solution, and in some cases, yields in few iteration we get exact solution. Moreover, 

this approach does not require any discretization or perturbations and therefore reduces the 

computations. The suggested procedure easy implementation yet highly accurate and rapidly 

converge to exact solution compares with the other methods.The methodology presented here 

is useful for strongly nonlinear problems. 

1. Introduction 

     In the last three decades, the Adomian Decomposition Method (ADM) has confirmed successful in 

getting analytical solution of non-linear differential equations by obtained solution in terms of 

convergent power series [1]. This method does not require discretization of the variables or domain [2, 
3]. The theoretical analysis of convergence for the series solution of ADM has been studied by 

Adomian [4], Cherrault [5], Cherrault et al. [6], and Chrysos et al. [7].  

     In recent years, there has been development in the application of ADM in solving partial 

differential equations (PDEs) with variable coefficients. For example, Wazwaz and Gorguis [8] also 

used the ADM solved linear (1+1) differential equations with variable coefficients. Soufyane and 

Boulmaf [9] applied ADM to get analytical solutions to the non-linear parabolic equation with variable 

physical parameters in time and space.  Achouri and Omrani [10], applied the ADM to get numerical 

solutions for the damped generalized regularized long-wave equation (DGRLW) with variable 

coefficients, and Tawfiq et al. (11-14) used this method for solving different model equations. 

      It is observed however that there are only a limited number of studies being researched on the use 

of ADM for solving nonlinear wave equations. The aim of this paper is to get the analytical solution of 

this type of equations using new modification of ADM. 

2. Combine ADM with Solitary Wave for Solving Nonlinear (1+1)-D Equation 
       In this section we describe the procedure of suggested new approach for solving nonlinear (1+1)-

D equations with initial condition.  

For a given NLPDEs with independent variables � = (�, �, �, … , �)  and dependent variable u: 

��	, 	
, 	�, 	�, 	
�, … 
 = 0             …(1) 

First, suppose the following new wave variable: 

                    ��= x − ct.                                                                        …(2) 
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Then the solution of this equation is of the form 

           u(x, t) = u(�) = f (x−t)                                                           …(3)                   

   Now, substitute equation (2) into equation (1) to obtain new form of equation since the equation 

transform from PDE to ODE. Hence we solve final form by ADM as follow:                                   

1. Express the PDE, linear or nonlinear, in operator form. 

2. Take the inverse operator to both sides of the Eq. (3).  

3. Write u(x, y) into a decomposition infinite series of the form:  

	(�, �) = � 	�(�, �)�

���
                                  … . (4) 

4. for the nonlinear term    

N�u = � ���     ���     N�u = � ���                             … . (5)              �

���
              �

���
 

Where  �� is Adomian polynomials can be computed by 

�� = 1�! ��
��� �� ����	�


�

���
�

���
   , � = 0,1,2, …     (6)     

 

3. Illustrative Examples 
        In this section we gave three examples to illustrate suggested modification, and implemented to 

the nonlinear wave equations: 

Example 1 

   Conceder the following nonlinear 3rd order (1+1)-D dispersive equation formulated by Kdv as: 

	� − 6		� + 	


 = 0                                                  (7)         
such that 	(�, �) is can able derivative and 	 → 0  as    |�| → 0  

#� − 6##
 + #


 = 0                                              

 Let  #(�, �) = $(� − %�) 

#� = −%$&  
#
 = $&           , #

 = $&&       ,   #


 = $′′′  
−%$& − $$& + $&&& = 0                           ,      * = � − %� 

−%$ − 3$� + $&& = 0                             
−2%$$& − 6$�$& + 2$&$&& = 0                           
−%$� − 2$- + ($′)� = 0                                        
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($)′� = %$� + 2$-   (8) 

$& = ±/%$� + 2$- 

$& = ±√% $91 + �:
;

let <� = �:
;     , $ = ;

� <� , $& = %<<& 

%<<& = ±√% ;
� <�√1 + <� 

>?
>√�@>A = ± √;

�  

B�
�√�@>A = ± ;

� �� 

%C%ℎE� < = ± √;
� z 

Y=±%C%ℎ √;
� � 

�:
; = %C%ℎ� ;

�z 

$ = ;
� %C%ℎ� ;

� �  , the solution of equation (7) is 

# = ;
� %C%ℎ� √;

� (� − %�) 

This solution satisfy the equation (7), that is 

$ = ;
� %C%ℎ� ;

� (�)  

$& = ;
� 2%C%ℎ √;

� (�)(−%C%ℎ ;
� �   %F�ℎ √;

� �)(√;
� ) 

$& = E;√;
� %C%ℎ� √;

� z coth
√;
� z , substitute $ , $′ in eq. (8) 

−% G;A
H %C%ℎH ;

� �I − 2 G;J
K %C%ℎL √;

� �I + ;J
H %C%ℎH √;

� �%F�ℎ� ;
� � 

E;J
H %C%ℎH √;

� � − ;J
H %C%ℎL √;

� � + ;J
H %C%ℎH √;

� �(1 + %C%ℎ� √;
� �) 

E;J
H %C%ℎH √;

� � − ;J
H %C%ℎL √;

� � + ;J
H %C%ℎH √;

� � + ;J
H %C%ℎL ;

� � = 0 

Thus # = ; %C%ℎ� √; (� − %�) is representing the exact solution. � �
 Also can be obtain the same solution of equation (7) by solving equation ( ) as follows
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 −%$ − 3$� + $&& = 0 

Let M = $&, → M BO
B: = $′′ 

 M BO
B: = %$ + 3$� 

OA
� = ;

� $� + $- 

 M = ±/%$� + 2$- 

$& = ±/%$� + 2$- 

$& = ±√% $91 + �:
;  ( ) 

let <� = �:
;

$ = ;
� <�  

$& = %<<&  
%<<& = ±√% ;

� <�√1 + <� 

>?
>√�@>A = ± √;

�  

B�
�√�@>A = ± ;

� �� 

%C%ℎE� < = ± √;
� z 

Y=±%C%ℎ √;
� � 

�:
; = %C%ℎ� ;

�z 

$ = ;
� %C%ℎ� ;

� �   →  # = ;
� %C%ℎ� √;

� (� − %�) 

Example 2 

 Conceder the following nonlinear 2nd order (1+1)-D PDE: 

	�� − 	

 + CP�	 = 0   
	(�, �) = $(� − %�)   ,  let     � = � − %� 

	� = −%$′ 
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 = $& , 	

 = $&&  ,   	


 = $′′′ 
%�$&& − $&& + CP�$ = 0 

(%� − 1)$&& + CP�$ = 0 

(%� − 1)$&&$′ + $′CP�$ = 0 

�;AE�

� ($′)� + %FC$ = −1 

($′)� = (−1 + %FC$) �
;AE�

($′)� = �
�E;A (1 − %FC$) 

($′)� = �
�E;A (2CP�� :

�) 

($′)� = H
�E;A (CP�� :

�) 

 $& = ± �
√�E;A CP� :

� 

B:
Q��RA

= ± �
√�E;A �� 

 2S� T��� :
HT = �

√�E;A � 

��� �
H $ = U V

/VWXA Y

$ = 4���E�(U V
/VWXA Y) 

So, u(x, t) = 4���E�(U V
/VWXA (
E;�)) 

Example 3 

   Conceder the following nonlinear 4th order (1+1)-D Boussines equation: 

	�� = 	

 + 3(	�)

 + 	




 Let  	(�, �) = $(� − %�)   

	� = −%$&  ,   	�� = %�$′′  
	
 = $&   ,     	

 = $&&       ,   	


 = $&&& , 	



 = $′′′′ 
%�$&& = $&& + 3($�)&& + $′′′′  
%�$& = $& + 3($�)& + $′′′   

                                           (10) 
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 %�$ = $ + 3$� + $′′    
(%� − 1)$ − 3$� − $&& = 0   

2(%� − 1)$$′ − 6$′$� − 2$′$&& = 0     

(%� − 1)$� − 2$- − ($′)� = 0   

 ($&)� = (%� − 1)$� − 2$- 

 $& = ±/(%� − 1)$� − 2$- 

 $& = ±√%� − 1 $ 91 − �
;AE� $ 

  let  �� = �
;AE� $ 

$& = (%� − 1)��′  
(%� − 1)��& = ±√%� − 1 ;AE�

� ��/1 − ��    
�&

�/�E�A = ± √;AE�
�    

CU%ℎE�� = ± √;AE�
� �    

� = ±CU%ℎ √;AE�
� �  

9 �
;AE� $ = ±CU% √;AE�

� �  

�
;AE� $ = CU%ℎ� √;AE�

� �  

$ = ;AE�
� CU%ℎ� √;AE�

� �  

	 = ;AE�
� CU%ℎ� √;AE�

� (� − %�)   

That is represent the exact solution 

4. The Convergence Analysis of LADM 

        In this section the convergence of the suggested approach will be discuss. Now, consider the 

general form of equation as: 

                             u –Nu = f         ; u ϵ H                                                      (11)                                                   

where H is the Hilbert space, N is the nonlinear operator N : H → H and f is also in H. Substituting the 

decomposition series equations (4) and (5) in equation (11) to get: 
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� 	�(�, �)  −�

���
� ��(�, �)�

���
= $ 

So the recursive terms are got by: u0 = f and un+1 = An(u0, u1, …, un) 

Proposed approach suggest finding Bn = u1 + u2 + u3 + … + un by using iterative scheme 

B0 = 0 

Bn+1 = N(Bn + u0), where 

N(Bn + u�)  = � ��
�

���
 

If the limit exist B = lim�→� [�, in a Hilbert space, then B is a solution of the equation B = 

N(u0 + B) in H. 

 

Theorem 1  

       Let N be a nonlinear operator, N: H → H where H is Hilbert space and u be the exact solution of 

equation (10). The decomposition series ∑ 	�(�, �) ���� converges to u when ∃ ^ < 1 ; ‖	�@�‖ ≤ ^‖	�‖ , � ∈ � 

Proof 

      We need to prove the sequence Bn = u1 + u2 + u3 + … + un , is a Cauchy sequence in the Hilbert 

space H. 

 ‖Be@� − Be‖ = ‖	�@�‖ ≤ ^‖	�‖  ≤ ^�‖	�E�‖ ≤ ⋯  ≤  ^�@�‖	�‖ 

 

Now, we show Bn is Cauchy sequence: ‖Bg − Be‖ = ‖(Bg − BgE� ) − (BgE� − BgE� ) − ⋯ − (Be@� − Be )‖ 

                   ≤ hBg − BgE� ║ + ‖BgE� − BgE� ‖ + ‖BgE� − BgE- ‖ + ⋯ + ║Be@� − Be h 

                   ≤  ^j‖	�‖ + ^jE�‖	�‖ + … + ^�@�‖	�‖ 

                   =  ( ^j +  ^jE� + ⋯ +  ^�@� ) ‖	�‖ 

                   ≤ ( ^�@� +  ^�@� + ⋯ ) ‖	�‖ 

So, ‖Bg − Be‖ =  kopV 
�Ek ‖	�‖,  for n, m ϵ N; m  ≥  n 

Since ^ < 1, the sequence Bn , n = 0, …, ∞  is a Cauchy sequence in the Hilbert space. Hence, lim�→� [� =  B. 
so B is the solution of equation (10) 

5. The order of Convergence for suggested approach 

      In this section we determine the order of convergence  

Definition 1 [15] 
Let Bn is a sequence that converges to B. If there exist two constants p and c, c ϵ R, p ϵ N, such that 
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lim�→� r [�@� − [([� − [)Or =  c  
Then the order of convergence of Bn is p. 

Proof  

Consider the Taylor expansion of N(Bn + uo) around the point (B + uo), i.e., 

N(Bn + uo) = N(B + uo) + N�(B + uo)(Bn – B) + 
�
�! N���(B + uo)(Bn – B)2 + … +

�
j! N(m)(B + uo)(Bn – B)m + 

….   

N(Bn + u0) – N(B + uo) = N�(B + uo)(Bn – B) + 
�
�! N��(B + uo)(Bn – B)2 + … +

�
j! N(m)(B + uo)(Bn – B)m + 

…. (11) 

                                                            
 Since N(B + uo) = B and N(Bn + uo) = Bn+1, so equation (11) becomes 

Bn+1 – B= N�(B + uo)(Bn – B) + 
�
�! N��(B + uo)(Bn – B)2 + … +

�
j! N(m)(B + uo)(Bn – B)m + … (12)                                       

Theorem 2     

       Let N ϵ vO[a, b] if wg (B + u0) = 0 for m = 0, 1,  2, …, p-1 and wx (B + u0) ≠ 0, then the order of 

sequence Bn is p. 

Proof 

     From the hypotheses of theorem, and equation (12) we get: 

Bn+1 - B = 
�
O! wx(B + u0) (Be –  B)x + �

(O@�)! wx@� (B + u0) (Be –  B)x@� + …              (13) 

Now, dividing both sides of equation (13) by (Bn – B)p we obtain: yzpVEy
(yz – y){ = �

O! wx(B +  u�) + �
(O@�)! wx@� (B + u0) (Be –  B) + …                               (14) 

                  
for both sides of equation (14) we take the limit as n →∞, so we get: 

lime →� T yzpVEy
(yz – y){T = lime →�

�
O! wx(B +  u�) + lime →�

�
(O@�)! wx@�(B + u0) (Be –  B) + … 

 
Since lime →� (Bn) = B then we has: 

lime →� r Be@� − B(Be –  B)xr = lime →�
1M! wx(B + u�) = c 

Then by definition 1 the order is p. 

6. Conclusions 

     In this research we consider the inhomogeneous nonlinear (1+1) dimensional differential equations 

with variable coefficients. To solve it, suggested approach is applied. Then, it is seen that suggested 

modification has the same exact solution. In addition to their effectiveness and usefulness in solving 

nonlinear PDEs, we show that these decomposition methods are powerful tools in solving nonlinear 

(1+1) dimensional differential equations. Compared to other methods for solving this type of PDEs, 

there is no need for of nonlinear terms. Moreover, we can easily and rapidly attain the solution if we 

use suggested approach compared with ADM. 
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