Preferred Language
Articles
/
ehe6WY8BVTCNdQwCN23Y
Facial deepfake performance evaluation based on three detection tools: MTCNN, Dlib, and MediaPipe
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Wed Apr 01 2020
Journal Name
Plant Archives
Land cover change detection using satellite images based on modified spectral angle mapper method
...Show More Authors

This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio

... Show More
Scopus (3)
Scopus
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Microwave Nondestructive Testing for Defect Detection in Composites Based on K-Means Clustering Algorithm
...Show More Authors

View Publication
Scopus (63)
Crossref (62)
Scopus Clarivate Crossref
Publication Date
Sun Dec 15 2019
Journal Name
Journal Of Baghdad College Of Dentistry
Evaluation of effect of local exogenous application of Myrrh oil on healing of wound incisions of facial skin (Histochemical, Histological and Histomorphometrical study in rabbits)
...Show More Authors

Aim of the study: Is to evaluate the effect of myrrh oil local application on the healing process of skin wounds histologically , histomorphometrically and , histochemically. Materials and methods:Twenty male white New Zealand rabbits were used in this study. An incisional wounds with full thickness depth and of 2 cm length were done on both sides of the cheek skin of each rabbit. The left sided incisions (the control group) were irrigated with distilled water (10µL). The right sided incisions (the experimental groups) were treated with myrrh oil (10µL). Each group was subdivided into 4 subgroups according to the healing interval into 1,3,7 and 14 days(5 rabbits for each group). Results: Histological findings of our current study s

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 21 2023
Journal Name
Bionanoscience
Evaluation the Antimicrobial Action of Kiwifruit Zinc Oxide Nanoparticles Against Staphylococcus aureus Isolated from Cosmetics Tools
...Show More Authors

View Publication
Scopus (19)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Tue Jul 01 2014
Journal Name
Ieee Transactions On Circuits And Systems I: Regular Papers
Crosstalk-Aware Multiple Error Detection Scheme Based on Two-Dimensional Parities for Energy Efficient Network on Chip
...Show More Authors

Achieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number o

... Show More
View Publication
Scopus (25)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Improving Nursing process Performance based on service scheduling dimensions. ( Field research)
...Show More Authors

Abstract :

This present paper sheds the light on dimensions of scheduling the service that includes( the easiness of performing the service, willingness , health factors, psychological sides, family matters ,diminishing the time of waiting that improve  performance of nursing process including ( the willingness of performance, the ability to perform  the performance , opportunity of performance) . There is genuine problem in the Iraqi hospitals  lying into the weakness of nursing staffs , no central decision to define and organize schedules. Thus the researcher has chosen  this problem as to be his  title . The research come a to develop  the nursing service

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 24 2020
Journal Name
Neuroimaging - Neurobiology, Multimodal And Network Applications
Electroencephalogram Based Biomarkers for Detection of Alzheimer’s Disease
...Show More Authors

Alzheimer’s disease (AD) is an age-related progressive and neurodegenerative disorder, which is characterized by loss of memory and cognitive decline. It is the main cause of disability among older people. The rapid increase in the number of people living with AD and other forms of dementia due to the aging population represents a major challenge to health and social care systems worldwide. Degeneration of brain cells due to AD starts many years before the clinical manifestations become clear. Early diagnosis of AD will contribute to the development of effective treatments that could slow, stop, or prevent significant cognitive decline. Consequently, early diagnosis of AD may also be valuable in detecting patients with dementia who have n

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
Deep Learning Approach for Oil Pipeline Leakage Detection Using Image-Based Edge Detection Techniques
...Show More Authors

Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are

... Show More
View Publication
Scopus (13)
Crossref (5)
Scopus Crossref
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref