This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classification methods, the results of the suggested method (MSAM) have been proved its superiority, where the classification accuracies are 88%, 91% and 92% for years 1986, 2000 and 2018, respectively. The results indicated that during the last three decades for study area subjected to many artificial and natural changes, these changes have impacts on land cover, vegetation, and the aquatic environment. In this paper from the results, one can see these marshes suffered was dryness, rareness in vegetation and increasing in alluvial soil during the period 1986 – 2000, while during 2000 - 2018 there were increasing in water and vegetation with a decreasing in the alluvial soil.
The main goal of this work is study the land cover changes for "Baghdad city" over a period of (30) years using multi-temporal Landsat satellite images (TM, ETM+ and OLI) acquired in 1984, 2000, and 2015 respectively. In this work, The principal components analysis transform has been utilized as multi operators, (i.e. enhancement, compressor, and temporal change detector). Since most of the image band's information are presented in the first PCs image. Then, the PC1 image for all three years is partitioned into variable sized blocks using quad tree technique. Several different methods of classification have been used to classify Landsat satellite images; these are, proposed method singular value decomposition (SVD) using Visual Basic sof
... Show MoreIn this paper, a new tunable approach for fusion the satellite images that fall in different electromagnetic wave ranges is presented, which gives us the ability to make one of the images features little superior on the other without reducing the general resultant image fusion quality, this approach is based on the principal component analysis (PCA) fusion method. A comparison made is between the results of the proposed approach and two fusion methods (they are: the PCA fusion method and the projection of eigenvectors on the bands fusion method), and the comparison results show the validity of this new method.
Deriving land cover information from satellite data is one of the most common applications employed to monitor, evaluate, and manage the environment. This study aims to detect the land cover/land use changes and calculate the areas of different land cover types in Baghdad, Iraq, for the period from 2015 to 2020, using Landsat 8 images. The supervised Maximum Likelihood Classification (MLC) method was applied to classify the images. Four land cover types were obtained, namely urban, vegetation, water, and barren soil. Changes in the four land cover classes during the study period were observed. The extent of the urban, vegetation, and water areas was increased by about 7.5%, 9.5%, and 1.5%, respectively, whereas t
... Show MoreLand Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that
... Show MoreThe detection and estimation of weathering conditions have become a very important daily necessity in our life. For this purpose, several satellites of low resolution imagery were launched by the weathering and environmental agencies. The important weather paremeters are temperuter, wind direction, velocity, clould and humidity, etc. The low resolution images often deal with large-scale phenomena and the interpretation and projection of the produced data requires continuous development of tools and criteria. In this paper, the low spatial resolution data generated by the moderate resolution imaging spectroradiometer (MODIS) were used to monitor the cloud density and direction above Iraq and i
... Show MoreThe purpose of the study is the city of Baghdad, the capital of Iraq, was chosen to study the spectral reflection of the land cover and to determine the changes taking place in the areas of the main features of the city using the temporal resolution of multispectral bands of the satellite Landsat 5 and 8 for MSS and OLI sensors respectively belonging to NASA and for the period 1999-2021, and calculating the increase and decrease in the basic features of Baghdad. The main conclusions of the study were, This study from 1999 to 2021 and in two different seasons: the Spring of the growing season and Summer the dry season. When using the supervised classification method to determine the differences, the results showed remarkable changes. Where h
... Show MoreThe purpose of the study is the city of Baghdad, the capital of Iraq, was chosen to study the spectral reflection of the land cover and to determine the changes taking place in the areas of the main features of the city using the temporal resolution of multispectral bands of the satellite Landsat 5 and 8 for MSS and OLI sensors respectively belonging to NASA and for the period 1999-2021, and calculating the increase and decrease in the basic features of Baghdad .The main conclusions of the study were,
This study from 1999 to 2021 and in two different seasons: the Spring of the growing season and Summer the dry season. When using the supervised classification method to determine the differences, the results showed rema
... Show MoreThe Normalization Difference Vegetation Index (NDVI), for many years, was widely used in remote sensing for the detection of vegetation land cover. This index uses red channel radiances (i.e., 0.66 μm reflectance) and near-IR channel (i.e., 0.86 μm reflectance). In the heavy chlorophyll absorption area, the red channel is located, while in the high reflectance plateau of vegetation canopies, the Near-IR channel is situated. Senses of channels (Red & Near- IR) read variance depths over vegetation canopies. In the present study, a further index for vegetation identification is proposed. The normalized difference vegetation shortwave index (NDVSI) is defined as the difference between the cubic bands of Near- IR and Shortwave infrared
... Show More