Preferred Language
Articles
/
uRc0Go4BVTCNdQwCZDEd
Deep Learning Approach for Oil Pipeline Leakage Detection Using Image-Based Edge Detection Techniques
...Show More Authors

Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are sent to the base station. Using deep learning approaches such as holistically-nested edge detection (HED) and extreme inception (Xception) networks, images are analyzed at the base station to identify contours using dense extreme inception networks for edge detection (DexiNed). This algorithm is capable of finding many contours in images. Moreover, the CIELAB color space (LAB) is employed to locate black-colored contours, which may indicate oil spills. The suggested method involves eliminating smaller contours to calculate the area of larger contours. If the contour's area exceeds a certain threshold, it is classified as a spill; otherwise, it is stored in a database for further review. In the experiments, spill sizes of 1m2, 2m2, and 3m2 were established at three separate test locations. The drone was operated at three different heights (5 m, 10 m, and 15 m) to capture the scenes. The results show that efficient detection can be achieved at a height of 10 meters using the DexiNed algorithm. Statistical comparison with other edge detection methods using basic metrics, such as perimage best threshold (OIS = 0.867), fixed contour threshold (ODS = 0.859), and average precision (AP = 0.905), validates the effectiveness of the DexiNed algorithm in generating thin edge maps and identifying oil slicks. © 2023 Lavoisier. All rights reserved.

Scopus Crossref
View Publication
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques
...Show More Authors

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for Facial Image Detection System
...Show More Authors

     Face detection systems are based on the assumption that each individual has a unique face structure and that computerized face matching is possible using facial symmetry. Face recognition technology has been employed for security purposes in many organizations and businesses throughout the world. This research examines the classifications in machine learning approaches using feature extraction for the facial image detection system. Due to its high level of accuracy and speed, the Viola-Jones method is utilized for facial detection using the MUCT database. The LDA feature extraction method is applied as an input to three algorithms of machine learning approaches, which are the J48, OneR, and JRip classifiers.  The experiment’s

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for Facial Image Detection System
...Show More Authors

HM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023

View Publication
Scopus (3)
Scopus
Publication Date
Mon May 15 2017
Journal Name
International Journal Of Image And Data Fusion
Image edge detection operators based on orthogonal polynomials
...Show More Authors

View Publication
Scopus (32)
Crossref (10)
Scopus Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Enhancement Digital Forensic Approach for Inter-Frame Video Forgery Detection Using a Deep Learning Technique
...Show More Authors

    The digital world has been witnessing a fast progress in technology, which led to an enormous increase in using digital devices, such as cell phones, laptops, and digital cameras. Thus, photographs and videos function as the primary sources of legal proof in courtrooms concerning any incident or crime. It has become important to prove the trustworthiness of digital multimedia. Inter-frame video forgery one of common types of video manipulation performed in temporal domain. It deals with inter-frame video forgery detection that involves frame deletion, insertion, duplication, and shuffling. Deep Learning (DL) techniques have been proven effective in analysis and processing of visual media. Dealing with video data needs to handle th

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Image Compression Using Deep Learning: Methods and Techniques
...Show More Authors

     In recent years images have been used widely by online social networks providers or numerous organizations such as governments, police departments, colleges, universities, and private companies. It held in vast databases. Thus, efficient storage of such images is advantageous and its compression is an appealing application. Image compression generally represents the significant image information compactly with a smaller size of bytes while insignificant image information (redundancy) already been removed for this reason image compression has an important role in data transfer and storage especially due to the data explosion that is increasing significantly. It is a challenging task since there are highly complex unknown correlat

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (5)
Scopus Crossref
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Plants Leaf Diseases Detection Using Deep Learning
...Show More Authors

     Agriculture improvement is a national economic issue that extremely depends on productivity. The explanation of disease detection in plants plays a significant role in the agriculture field. Accurate prediction of the plant disease can help treat the leaf as early as possible, which controls the economic loss. This paper aims to use the Image processing techniques with Convolutional Neural Network (CNN). It is one of the deep learning techniques to classify and detect plant leaf diseases. A publicly available Plant village dataset was used, which consists of 15 classes, including 12 diseases classes and 3 healthy classes.  The data augmentation techniques have been used. In addition to dropout and weight reg

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Crossref
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimation Optimal Threshold Value for Image Edge Detection
...Show More Authors

      A new approach presented in this study to determine the optimal edge detection threshold value. This approach is base on extracting small homogenous blocks from unequal mean targets. Then, from these blocks we generate small image with known edges (edges represent the lines between the contacted blocks). So, these simulated edges can be assumed as true edges .The true simulated edges, compared with the detected edges in the small generated image is done by using different thresholding values. The comparison based on computing mean square errors between the simulated edge image and the produced edge image from edge detector methods. The mean square error computed for the total edge image (Er), for edge regio

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
COMPARATIVE STUDY FOR EDGE DETECTION OF NOISY IMAGE USING SOBEL AND LAPLACE OPERATORS
...Show More Authors

Many approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good

... Show More
View Publication Preview PDF