Preferred Language
Articles
/
eRaTGIcBVTCNdQwCZzZc
Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms
...Show More Authors
Abstract<p>The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.</p>
Crossref
View Publication
Publication Date
Fri Jun 01 2018
Journal Name
International Journal Of Health Sciences
Molecular assessment of some cardiovascular genetic risk factors among Iraqi patients with ischemic heart diseases
...Show More Authors

Abstract Objective: The underlying molecular basis of ischemic heart diseases (IHDs) has not yet been studied among Iraqi people. This study determined the frequency and types of some cardiovascular genetic risk factors among Iraqi patients with IHDs. Methods: This is a cross-sectional study recruiting 56 patients with acute IHD during a 2-month period excluding patients >50 years and patients with documented hyperlipidemia. Their ages ranged between 18 and 50 years; males were 54 and females were only 2. Peripheral blood samples were aspirated from all patients for troponin I and DNA testing. Molecular analysis to detect 12 common cardiovascular genetic risk factors using CVD StripAssay® (ViennaLab Diagnostics GmbH, Austria) was performed

... Show More
View Publication
Publication Date
Sun Mar 06 2016
Journal Name
Baghdad Science Journal
Association of Glutathione–S-Transferase (GSTP1) Genetic Polymorphism in Iraqi Patients with Diabetes Mellitus Type2
...Show More Authors

Glutathione S-transferases (GSTs) are enzymes that included, in a more range of detoxifying reactions by conjugation of glutathione, to electrophilic material. Polymorphisms n the genes that responsible of GSTs affect, the function of the GSTs. GSTs play an active role in protection of cell against oxidative stress mechanism. Polymorphisms of GSTP1 at codon 105 amino acids forms GSTP1 important site for bind of hydrophobic electrophiles and the substitution of Ile/Val affect substrate specially catalytic activity of the enzyme and may correlate with reach to different diseases in human like diabetes mellitus type2 disease. Correlation between these polymorphisms and changes in the parameters file of diabetic patients has also bee

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using Iterative Reweighting Algorithm and Genetic Algorithm to Calculate The Estimation of The Parameters Of The Maximum Likelihood of The Skew Normal Distribution
...Show More Authors

Excessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the M

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Application of Weyl Module In The Case Of Two Rows
...Show More Authors

View Publication
Scopus (17)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Sep 08 2022
Journal Name
Al-khwarizmi Engineering Journal
Performance Prediction in EDM Process for Al 6061 Alloy Using Response Surface Methodology and Genetic Algorithm
...Show More Authors

The Electric Discharge (EDM) method is a novel thermoelectric manufacturing technique in which materials are removed by a controlled spark erosion process between two electrodes immersed in a dielectric medium. Because of the difficulties of EDM, determining the optimum cutting parameters to improve cutting performance is extremely tough. As a result, optimizing operating parameters is a critical processing step, particularly for non-traditional machining process like EDM. Adequate selection of processing parameters for the EDM process does not provide ideal conditions, due to the unpredictable processing time required for a given function. Models of Multiple Regression and Genetic Algorithm are considered as effective methods for determ

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Aug 30 2025
Journal Name
Iraqi Journal Of Science
A Face Mask Detection Method in the Era of the COVID-19 Pandemic Based on GLCM and YOLO
...Show More Authors

In recent decades, the identification of faces with and without masks from visual data, such as video and still images, has become a captivating research subject. This is primarily due to the global spread of the Corona pandemic, which has altered the appearance of the world and necessitated the use of masks as a vital measure for epidemic prevention. Intellectual development based on artificial intelligence and computers plays a decisive role in the issue of epidemic safety, as the topic of facial recognition and identifying individuals who wear masks or not was most prominent in the introduction and in-depth education. This research proposes the creation of an advanced system capable of accurately identifying faces, both with and

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Mar 12 2024
Journal Name
Semiconductor Physics, Quantum Electronics And Optoelectronics
Numerical study of single-layer and interlayer grating polarizers based on metasurface structures for quantum key distribution systems
...Show More Authors

Polarization is an important property of light, which refers to the direction of electric field oscillations. Polarization modulation plays an essential role for polarization encoding quantum key distribution (QKD). Polarization is used to encode photons in the QKD systems. In this work, visible-range polarizers with optimal dimensions based on resonance grating waveguides have been numerically designed and investigated using the COMSOL Multiphysics Software. Two structures have been designed, namely a singlelayer metasurface grating (SLMG) polarizer and an interlayer metasurface grating (ILMG) polarizer. Both structures have demonstrated high extinction ratios, ~1.8·103 and 8.68·104 , and the bandwidths equal to 45 and 55 nm for th

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Fri May 21 2021
Journal Name
International Journal Of Pavement Research And Technology
Developing Resilient Modulus Prediction Models Based on Experimental Results of Crushed Hornfels Mixes with Different Gradations and Plasticity
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Indian Academy Of Oral Medicine And Radiology
The Degenerative Condylar Change in Temporomandibular Joint Disorder of Iraqi Population and their Variability Based on Clinical Diagnosis
...Show More Authors

Background: As a multifactorial disorder, temporomandibular joint (TMD) is difficult to diagnose, and multiple factors affect the joint and cause the temporomandibular disorder. Standardization of clinical diagnosis of TMD should be used to reach a definite clinical diagnosis; the condylar bone may degenerate in accordance with these disorders. Aims: Evaluate the correlation between the clinical diagnosis and degenerative condylar change (flattening, sclerosis, erosion, and osteophyte). Materials and Methods: A prospective study with a study group of 97 TMD patients (total of 194 joints) aged 20 to 50. Patients were sent to cone beam computed tomography (CBCT) to assess the degenerative condylar change. Results: No association was found bet

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
Optimizing genetic prediction: Define-by-run DL approach in DNA sequencing
...Show More Authors

Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref