The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.
Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization
... Show MoreABSTRACT
Naproxen(NPX) imprinted liquid electrodes of polymers are built using polymerization precipitation. The molecularly imprinted (MIP) and non imprinted (NIP) polymers were synthesized using NPX as a template. In the polymerization precipitation involved, styrene(STY) was used as monomer, N,N-methylenediacrylamide (N,N-MDAM) as a cross-linker and benzoyl peroxide (BPO) as an initiator. The molecularly imprinted membranes and the non-imprinted membranes were prepared using acetophenone(AOPH) and di octylphathalate(DOP)as plasticizers in PVC matrix. The slopes and detection limits of the liquid electrodes ranged from)-18.1,-17.72 (mV/decade and )4.0 x 10-
... Show MoreExcessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the M
... Show MoreSuffer most of the facilities of the high cost of inventory , which affects the high cost of the product and thus affects many administrative decisions , as well as suffer the facilities of the systems developed by the provisions of inventory control , and this problem is exacerbated in the construction sector where the inventory in the form of Construction spin of the Year for another it becomes difficult to control the cost effectively , and is the research problem in question follows: What are the implications of the use of the system in time inventory accounting system for the contracting company does kills Alrkaah to the provisions of the cost of inventory and what is the optimal approach to inventory control ? Find assumed
... Show MoreAs an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreAn experiment was carried out in the vegetables field of Horticulture Department / College of Agriculture / Baghdad University , for the three seasons : spring and Autumn of 2005 , and spring of 2007 , to study the type of gene action in some traits of vegetative , flowery growth , yield and its components in summer squash crosses (4 x 3 = cross 1 , 3 x 7 = cross 2 , 3 x 4 = cross 3 , 3 x 5 = cross 4 , 5 x 1= cross 5 , 5 x 2 = cross 6). The study followed generation mean analysis method which included to each cross (P1 , P2 , F1 , F2 , Bc1P1 , Bc1P2) , and those populations obtained by hybridization during the first and second seasons. Experimental comparison was performed in the second (Two crosses only) and third seasons , (four crosses)
... Show MoreThis study compared in vitro the microleakage of a new low shrink silorane-based posterior composite (Filtek™ P90) and two methacrylate-based composites: a packable posterior composite (Filtek™ P60) and a nanofill composite (Filtek™ Supreme XT) through dye penetration test. Thirty sound human upper premolars were used in this study. Standardized class V cavities were prepared at the buccal surface of each tooth. The teeth were then divided into three groups of ten teeth each: (Group 1: restored with Filtek™ P90, Group 2: restored with Filtek™ P60, and Group 3: restored with Filtek™ Supreme XT). Each composite system was used according to the manufacturer's instructions with their corresponding adhesive systems. The teeth were th
... Show MoreAn optimization study was conducted to determine the optimal operating pressure for the oil and gas separation vessels in the West Qurna 1 oil field. The ASPEN HYSYS software was employed as an effective tool to analyze the optimal pressure for the second and third-stage separators while maintaining a constant operating pressure for the first stage. The analysis involved 10 cases for each separation stage, revealing that the operating pressure of 3.0 Kg/cm2 and 0.7 Kg/cm2 for the second and third stages, respectively, yielded the optimum oil recovery to the flow tank. These pressure set points were selected based on serval factors including API gravity, oil formation volume factor, and gas-oil ratio from the flow tank. To impro
... Show MoreCharge transfer complex formation method has been applied for the spectrophotometric determination of erythromycin ethylsuccinate, in bulk sample and dosage form. The method was accurate, simple, rapid, inexpensive and sensitive depending on the formed charge- transfer complex between cited drug and, 2,3- Dichloro-5,6-dicyano-p- benzoquinone (DDQ) as a chromogenic reagent. The formed complex shows absorbance maxima at 587 nm against reagent blank. The calibration graph is linear in the ranges of (10 - 110) μg.mL-1 with detection limit of 0.351μg.mL-1. The results show the absence of interferences from the excipients on the determination of the drug. Therefore the proposed method has been successfully applied for the determination of eryth
... Show More