Preferred Language
Articles
/
eRaTGIcBVTCNdQwCZzZc
Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms
...Show More Authors
Abstract<p>The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.</p>
Crossref
View Publication
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
The use of the genetic algorithm to estimate the parameters function of the hypoexponential distribution by simulation
...Show More Authors

In this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method

View Publication Preview PDF
Crossref
Publication Date
Mon Nov 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
The Use of Auto-Regressive Distributed Lag Method in Investigating The Impact of Interest Rate on Foreign Direct Investment in Yemen for the Period 1990-2018
...Show More Authors

 Foreign direct investment has seen increasing interest worldwide, especially in developing economies. However, statistics have shown that Yemen received fluctuating FDI inflows during the period under study. Against this background, this research seeks to determine the relationship and impact of interest rates on FDI flows. The study also found other determinants that greatly affected FDI inflows in Yemen for the period 1990-2018. Study data collected from the World Bank and International Monetary Fund databases. It also ensured that the time series were made balanced and interconnected, and then the Auto Regressive Distributed Lag method used in the analysis. The results showed that the interest rates and

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating the Survival Function and Failure Rate for the Exponentiated Expanded Power Function Distribution
...Show More Authors

       We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed  (LSD) to estimate the parameters an

... Show More
View Publication
Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Prediction of the Scale Removal Rate in Heat Exchanger Piping System Using the Analogies between Mass and Momentum Transfer
...Show More Authors

The possibility of predicting the mass transfer controlled CaCO3 scale removal   rate has been investigated.

Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.

Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .

View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Theoretical Study and calculation The cold Reaction Rate of Deuteron Fusion In Nickel Metal Using Bose–Einstein Condensate Theory
...Show More Authors

In this paper, we focused on the investigated and studied the cold fusion reaction rate for D-D using the theory of Bose-Einstein condensation and depending on the quantum mechanics consideration. The quantum theory was based on the concept of single conventional of deuterons in Nickel-metal due to Bose-Einstein condensation, it has supplied a consistent description and explained of the experimental data. The analysis theory model has capable of explaining the physical behaviour of deuteron induced nuclear reactions in Nickel metals upon the five-star matter, it's the most expected for a quantitative predicted of the physical theory. Based on the Bose-Einstein condensation theorem formulation, we calculation the cold fusion reaction rate fo

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating the Survival Function and Failure Rate for the Exponentiated Expanded Power Function Distribution
...Show More Authors

 

     We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed  (LSD)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
2019 International Engineering Conference (iec)
Assessment of Specific Absorption Rate and Temperature in the Tumor Tissue Subjected to Plasmonic Bow-Tie Optical Nano-Antenna
...Show More Authors

View Publication
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Sun Oct 29 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Optimization Techniques for Human Multi-Biometric Recognition System
...Show More Authors

Researchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model wa

... Show More
View Publication
Crossref
Publication Date
Thu Sep 26 2019
Journal Name
Processes
Fine-Tuning Meta-Heuristic Algorithm for Global Optimization
...Show More Authors

This paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown t

... Show More
View Publication Preview PDF
Scopus (26)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Thu Mar 23 2023
Journal Name
Journal Of Applied Science And Engineering
Strong Fenchel Duality for Evenly Convex Optimization Problems
...Show More Authors

Among a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.

View Publication
Scopus (1)
Scopus Clarivate