Preferred Language
Articles
/
eRaNtIcBVTCNdQwCwFxi
On Maximal solution of nonlinear operator equation
...Show More Authors

Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
S-maximal Submodules
...Show More Authors

Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Basrah Journal Of Science
Nearly Maximal Submodules
...Show More Authors

Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Approximate Analytical Solutions of Bright Optical Soliton for Nonlinear Schrödinger Equation of Power Law Nonlinearity
...Show More Authors

This paper introduces the Multistep Modified Reduced Differential Transform Method (MMRDTM). It is applied to approximate the solution for Nonlinear Schrodinger Equations (NLSEs) of power law nonlinearity. The proposed method has some advantages. An analytical approximation can be generated in a fast converging series by applying the proposed approach. On top of that, the number of computed terms is also significantly reduced. Compared to the RDTM, the nonlinear term in this method is replaced by related Adomian polynomials prior to the implementation of a multistep approach. As a consequence, only a smaller number of NLSE computed terms are required in the attained approximation. Moreover, the approximation also converges rapidly over a

... Show More
View Publication Preview PDF
Scopus (12)
Scopus Clarivate Crossref
Publication Date
Thu May 08 2025
Journal Name
Journal Of Interdisciplinary Mathematics
Fibrewise minimal and maximal regular spaces and Fibrewise minimal and maximal normal spaces
...Show More Authors

The aim of this paper is to introduce and study some of the Fibrewise minimal regular,Fibrewise maximal regular, Fibrewise minimal completely regular, Fibrewise maximal completely regular, Fibrewise minimal normal, Fibrewise maximal normal, Fibrewise minimal functionally normal, and Fibrewise maximal functionally normal. This is done by providing some definitions of the concepts and examples related to them, as well as discussing some properties and mentioning some explanatory diagrams for those concepts.

View Publication
Scopus Clarivate Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
The Approximate Solution of Fractional Damped Burger’s Equation and its Statistical Properties
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Mixed Volterra – Fredholm Integral Equation Using the Collocation Method
...Show More Authors

Volterra Fredholm integral equations (VFIEs) have a massive interest from researchers recently. The current study suggests a collocation method for the mixed Volterra - Fredholm integral equations (MVFIEs)."A point interpolation collocation method is considered by combining the radial and polynomial basis functions using collocation points". The main purpose of the radial and polynomial basis functions is to overcome the singularity that could associate with the collocation methods. The obtained interpolation function passes through all Scattered Point in a domain and therefore, the Delta function property is the shape of the functions. The exact solution of selective solutions was compared with the results obtained

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials
...Show More Authors

In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Numerical Solution for Linear Fredholm Integro-Differential Equation Using Touchard Polynomials
...Show More Authors

A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.

 

View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of classical method and optimization methods for estimating parameters in nonlinear ordinary differential equation
...Show More Authors

 ABSTRICT:

  This study is concerned with the estimation of constant  and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator
...Show More Authors

The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref