The linear non-polynomial spline is used here to solve the fractional partial differential equation (FPDE). The fractional derivatives are described in the Caputo sense. The tensor products are given for extending the one-dimensional linear non-polynomial spline to a two-dimensional spline to solve the heat equation. In this paper, the convergence theorem of the method used to the exact solution is proved and the numerical examples show the validity of the method. All computations are implemented by Mathcad15.
In this work, the fractional damped Burger's equation (FDBE) formula = 0,
The aim of this paper is adopted to give an approximate solution for advection dispersion equation of time fractional order derivative by using the Chebyshev wavelets-Galerkin Method . The Chebyshev wavelet and Galerkin method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are described based on the Caputo sense. Illustrative examples are included to demonstrate the validity and applicability of the proposed technique.
In this work, we are concerned with how to find an explicit approximate solution (AS) for the telegraph equation of space-fractional order (TESFO) using Sumudu transform method (STM). In this method, the space-fractional order derivatives are defined in the Caputo idea. The Sumudu method (SM) is established to be reliable and accurate. Three examples are discussed to check the applicability and the simplicity of this method. Finally, the Numerical results are tabulated and displayed graphically whenever possible to make comparisons between the AS and exact solution (ES).
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
In this paper we shall prepare an sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).
In this paper we shall prepare an sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).