R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
The basic concepts of some near open subgraphs, near rough, near exact and near fuzzy graphs are introduced and sufficiently illustrated. The Gm-closure space induced by closure operators is used to generalize the basic rough graph concepts. We introduce the near exactness and near roughness by applying the near concepts to make more accuracy for definability of graphs. We give a new definition for a membership function to find near interior, near boundary and near exterior vertices. Moreover, proved results, examples and counter examples are provided. The Gm-closure structure which suggested in this paper opens up the way for applying rich amount of topological facts and methods in the process of granular computing.
This paper is concerned with introducing and studying the o-space by using out degree system (resp. i-space by using in degree system) which are the core concept in this paper. In addition, the m-lower approximations, the m-upper approximations and ospace and i-space. Furthermore, we introduce near supraopen (near supraclosed) d. g.'s. Finally, the supra-lower approximation, supraupper approximation, supra-accuracy are defined and some of its properties are investigated.
The internal administrative spaces of the interior designer formed an obsession for their development and for finding solutions and treatments to advance to enhance the state of adaptation for their employees by providing a healthy, appropriate and sound environment for work and production. . The first chapter focuses on laying theoretical foundations to show what health materials are used in the administrative spaces of the training directorates of the Ministry of Education in Baghdad. The second chapter dealt with the knowledge of health materials, their impact and effectiveness in the interior space, and the variables of their functional characteristics and their work in the interior spaces in a way that enhances the development of
... Show MoreThe primary objective of this paper is to introduce a new concept of fibrewise topological spaces on D is named fibrewise multi- topological spaces on D. Also, we entroduce the concepts of multi-proper, fibrewise multi-compact, fibrewise locally multi-compact spaces, Moreover, we study relationships between fibrewise multi-compact (resp., locally multi-compac) space and some fibrewise multi-separation axioms.
In the present study, Čech fuzzy soft bi-closure spaces (Čfs bi-csp’s) are defined. The basic properties of Čfs bi-csp’s are studied such as we show from each Čfs bi-csp’s (
Abstract. This study gives a comprehensive analysis of the properties and interactions of fibrewise maximal and minimal topological spaces. Fibrewise topology extends classical topological concepts to structured spaces, providing a thorough understanding of spaces that vary across different dimensions. We study the basic theories, crucial properties, and characterizations of maximal and minimal fibrewise topological spaces. We investigate their role in different mathematical contexts and draw connections with related topological concepts. By providing exact mathematical formulations and comprehensive examples, this abstract advances the fields of topology and mathematical analysis by elucidating the unique properties and implications of fib
... Show More