In thisˑ paperˑ, we apply the notion ofˑ intuitionisticˑ fuzzyˑ n-fold KU-ideal of KU-algebra. Some types of ideals such as intuitionistic fuzzy KU-ideal, intuitionisticˑ fuzzy closed idealˑ and intuitionistic fuzzy n-fold KU-ideal are studied. Also, the relations between intuitionistic fuzzy n-fold KU-ideal and intuitionistic fuzzy KU-ideal are discussed. Furthermore, aˑ fewˑ results of intuitionisticˑ fuzzyˑ n-ˑfold KU-ideals of a KU-algebra underˑ homomorphismˑ are discussed.
The aim of this paper is to study the Zariski topology of a commutative KU-algebra. Firstly, we introduce new concepts of a KU-algebra, such as KU-lattice, involutory ideal and prime ideal and investigate some basic properties of these concepts. Secondly, the notion of the topology spectrum of a commutative KU-algebra is studied and several properties of this topology are provided. Also, we study the continuous map of this topological space.
It was known that every left (?,?) -derivation is a Jordan left (?,?) – derivation on ?-prime rings but the converse need not be true. In this paper we give conditions to the converse to be true.
In This paper, we introduce the associated graphs of commutative KU-algebra. Firstly, we define the KU-graph which is determined by all the elements of commutative KU-algebra as vertices. Secondly, the graph of equivalence classes of commutative KU-algebra is studied and several examples are presented. Also, by using the definition of graph folding, we prove that the graph of equivalence classes and the graph folding of commutative KU-algebra are the same, where the graph is complete bipartite graph.
In the present paper, discuss the concept of fuzzy topological spectrum of a bounded commutative KU-algebra and study some of the characteristics of this topology. Also, we show that the fuzzy topological spectrum of this structure is compact and T1 -space.
In this work, we study of the concept of a cubic set of a semigroup in KU-algebra. Firstly, we study a cubic sub KU-semigroup and achieve some results in this notion. And then, we get a relation between a cubic sub KU-semi group and a level set of a cubic set. Moreover, we define some cubic ideals of this structure and we found relationships between these ideals.
2010 AMS Classification. 08A72, 03G25, 06F35
In this work, we apply the notion of a filter of a KU-Algebra and investigate several properties. The paper defined some filters such as strong filter, n-fold filter and P-filter and discussed a few theorems and examples.
In this paper, the structure of and have been introduced and studied. We also obtain that a is of a if and only if there exists an on such that . In addition, we obtain that of if and only if there is an on such that , where are subspaces of with eigenvalues 1 and −1, respectively. We also find t that the existence of on implies that there exists a compatible under appropriate condition.
An intuitionistic fuzzy set was exhibited by Atanassov in 1986 as a generalization of the fuzzy set. So, we introduce cubic intuitionistic structures on a KU-semigroup as a generalization of the fuzzy set of a KU-semigroup. A cubic intuitionistic k-ideal and some related properties are introduced. Also, a few characterizations of a cubic intuitionistic k-ideal are discussed and new cubic intuitionistic fuzzy sets in a KU-semigroup are defined.