The main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.
Let R be a commutative ring with unity and let M be an R-module. In this paper we
study strongly (completely) hollow submodules and quasi-hollow submodules. We investigate
the basic properties of these submodules and the relationships between them. Also we study
the be behavior of these submodules under certain class of modules such as compultiplication,
distributive, multiplication and scalar modules. In part II we shall continue the study of these
submodules.
Let be a non-zero right module over a ring with identity. The weakly second submodules is studied in this paper. A non-zero submodule of is weakly second Submodule when , where , and is a submodule of implies either or . Some connections between these modules and other related modules are investigated and number of conclusions and characterizations are gained.
The main goal of this paper is to introduce a new class in the category of modules. It is called quasi-invertibility monoform (briefly QI-monoform) modules. This class of modules is a generalization of monoform modules. Various properties and another characterization of QI-monoform modules are investigated. So, we prove that an R-module M is QI-monoform if and only if for each non-zero homomorphism f:M E(M), the kernel of this homomorphism is not quasi-invertible submodule of M. Moreover, the cases under which the QI-monoform module can be monoform are discussed. The relationships between QI-monoform and other related concepts such as semisimple, injective and multiplication modules are studied. We also show that they are proper subclass
... Show MoreLet be a commutative ring with identity, and a fixed ideal of and be an unitary -module. In this paper we introduce and study the concept of -nearly prime submodules as genrealizations of nearly prime and we investigate some properties of this class of submodules. Also, some characterizations of -nearly prime submodules will be given.
In this research note approximately prime submodules is defined as a new generalization of prime submodules of unitary modules over a commutative ring with identity. A proper submodule of an -module is called an approximaitly prime submodule of (for short app-prime submodule), if when ever , where , , implies that either or . So, an ideal of a ring is called app-prime ideal of if is an app-prime submodule of -module . Several basic properties, characterizations and examples of approximaitly prime submodules were given. Furthermore, the definition of approximaitly prime radical of submodules of modules were introduced, and some of it is properties were established.
Our aim in this work is to investigate prime submodules and prove some properties of them. We study the relations between prime submodules of a given module and the extension of prime submodules. The relations between prime submodules of two given modules and the prime submodules in the direct product of their quotient module are studied and investigated.
Among a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.
M is viewed as a right module over an arbitrary ring R with identity. The essential second modules is defined in this paper. We call M is essential second when for any a bilongs to R, either Ma = 0 or Ma <e M. Number of conclusions are gained and some connections between these modules and other related modules are studied.