The main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.
Let ℛ be a commutative ring with unity and let ℬ be a unitary R-module. Let ℵ be a proper submodule of ℬ, ℵ is called semisecond submodule if for any r∈ℛ, r≠0, n∈Z+, either rnℵ=0 or rnℵ=rℵ.
In this work, we introduce the concept of semisecond submodule and confer numerous properties concerning with this notion. Also we study semisecond modules as a popularization of second modules, where an ℛ-module ℬ is called semisecond, if ℬ is semisecond submodul of ℬ.
We introduce in this paper the concept of an approximately pure submodule as a generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module is approximately pure, then is called F-approximately regular. Further, many results about this concept are given.
Let R be an associative ring with identity and let M be a unitary left R–module. As a generalization of small submodule , we introduce Jacobson–small submodule (briefly J–small submodule ) . We state the main properties of J–small submodules and supplying examples and remarks for this concept . Several properties of these submodules are given . Also we introduce Jacobson–hollow modules ( briefly J–hollow ) . We give a characterization of J–hollow modules and gives conditions under which the direct sum of J–hollow modules is J–hollow . We define J–supplemented modules and some types of modules that are related to J–supplemented modules and int
... Show MoreLet be a commutative ring with an identity and be a unitary -module. We say that a non-zero submodule of is primary if for each with en either or and an -module is a small primary if = for each proper submodule small in. We provided and demonstrated some of the characterizations and features of these types of submodules (modules).
Let R be a commutative ring with unity and let M be a unitary R-module. Let N be a proper submodule of M, N is called a coprime submodule if ï ïŽ is a coprime R-module, where ï ïŽ is a coprime R-module if for any r  R, either O  ï ïŽ ï ïŽ r or  ï ïŽ ï ïŽr . In this paper we study coprime submodules and give many properties related with this concept.
Let R be a commutative ring with identity and M be an unitary R-module. Let ï¤(M) be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is ï¹-prime if for each r  R and x  M, if rx  P, then either x  P + ï¹(P) or r M ïƒ P + ï¹(P) . Some of the properties of this concept will be investigated. Some characterizations of ï¹-prime submodules will be given, and we show that under some assumptions prime submodules and ï¹-prime submodules are coincide.
Let be a commutative ring with identity , and be a unitary (left) R-module. A proper submodule of is said to be quasi- small prime submodule , if whenever with and , then either or . In this paper ,we give a comprehensive study of quasi- small prime submodules.
Let be a unitary left R-module on associative ring with identity. A submodule of is called -annihilator small if , where is a submodule of , implies that ann( )=0, where ann( ) indicates annihilator of in . In this paper, we introduce the concepts of -annihilator-coessential and - annihilator - coclosed submodules. We give many properties related with these types of submodules.
Throughout this note, R is commutative ring with identity and M is a unitary R-module. In this paper, we introduce the concept of quasi J- submodules as a – and give some of its basic properties. Using this concept, we define the class of quasi J-regular modules, where an R-module J- module if every submodule of is quasi J-pure. Many results about this concept