The purpose of this paper is to introduce and prove some coupled coincidence fixed point theorems for self mappings satisfying -contractive condition with rational expressions on complete partially ordered metric spaces involving altering distance functions with mixed monotone property of the mapping. Our results improve and unify a multitude of coupled fixed point theorems and generalize some recent results in partially ordered metric space. An example is given to show the validity of our main result.
The aim of this paper is to introduce the concepts of asymptotically p-contractive and asymptotically severe accretive mappings. Also, we give an iterative methods (two step-three step) for finite family of asymptotically p-contractive and asymptotically severe accretive mappings to solve types of equations.
Adsorption and ion exchange are examples of fixed-bed sorption processes that show transient behavior. This means that differential equations are needed to design them. As a result, numerical methods are commonly utilized to solve these equations. The solution frequently used in analytical methods is called the Thomas solution. Thomas gave a complete solution that adds a nonlinear equilibrium relationship that depends on second-order reaction kinetics. A computational approach was devised to solve the Thomas model. The Thomas model's validity was established by conducting three distinct sets of experiments. The first entails the adsorption of acetic acid from the air through the utilization of activated carbon. Following
... Show MoreThis paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreInterest in belowground plant growth is increasing, especially in relation to arguments that shallow‐rooted cultivars are efficient at exploiting soil phosphorus while deep‐rooted ones will access water at depth. However, methods for assessing roots in large numbers of plants are diverse and direct comparisons of methods are rare. Three methods for measuring root growth traits were evaluated for utility in discriminating rice cultivars: soil‐filled rhizotrons, hydroponics and soil‐filled pots whose bottom was sealed with a non‐woven fabric (a potential method for assessing root penetration ability). A set of 38 rice genotypes including the Oryza
The study of homomorphisms in cubic sets is considered one of the important concepts that transfer algebraic properties between different structures, so we study a homomorphism of a cubic set of a semigroup in a KU-algebra and defined the product of two cubic sets in this structure. Firstly, we define the image and the inverse image of a cubic set in a KU-semigroup and achieve some results in this notion. Secondly, the Cartesian product of cubic subsets in a KU-semigroup is discussed and some important characteristics are proved.