The existing investigation explains the consequence of irradiation of violet laser on the structure properties of MawsoniteCu6Fe2SnS8 [CFTS] thin films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser. when the received films were processed by continuous red laser (700 nm) with power (>1000mW) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time (0,30,45,60,75,90 min) respectively at room temperature.. The XRD diffraction gave polycrystalline nature with tetragonal crystal system.The result was that the structure properties of MawsoniteCu6Fe2SnS8thin films affected by laser irradiation where the XRD measurement the result was the grain size and stress values that decrease with increasing irradiation time, whereas the values of intensity , FWHM and d-spacing for the largest peak increase with a slight increase with the increase in the irradiation time and slight increase in growth of some peaks with increasing irradiation time.. While not affected EDX and FTIR measurements by laser irradiation, the result was the same for all samples.As for AFM measurement showed that the surface roughness, root mean square and average diameter values that decrease with increasing irradiation time. Note from SEM measurement that the surface topography affected with different time of irradiation red laser. This result due to laser irradiation worked like annealing temperature to enhance the crystallization of the deposited films. As the results showed that the laser irradiation method has a clear change in the structure properties with less time and energy than the traditional annealing methods which is the aim of this study. Keywords: red laser irradiation, semi-computerized spray technique, Structure properties of Mawsonite, Cu6Fe2S8Sn.
This study includes the manufacture of four ternary alloys represented S60Se40-XPbX with weight ratios x = 0, 10, 20, and 30 by the melting point method. The components of each alloy were mixed separately, then placed in quartz ampoules and vacuumed out with a vacuum of roger that 10−4 Torr. The ampule was heated in two stages to avoid sudden dissipation and precipitation of selenium on the inner mass of the quartz tube. The ampoule was gradually heated and kept at 450°C for approximately 4 hours followed by 950°C for 10 hours.at a rate of 10 degrees Celsius, the temperature of the electric furnace
In this study, the melting-cooling method was used to prepare the chalcogenide compound S60-Se40-X-PbX. Four samples were obtained by partial replacement of Selenium with Lead in the weight ratios x = 0, 10, 20, and 30, respectively. The materials were mixed separately, ground, placed in quartz ampoules, and heated to 500 degrees Celsius. After conducting several operations on the samples, their insulating properties were studied, represented by the real dielectric constant and the imaginary dielectric constant, and the electrical conductivity was measured as a function of the frequency. It was found that partial replacement plays an impo
The poly(ethylene oxide) polymer (PEO) is doped with fine powder of MnCl2 salt and thin films of thickness (50–150 mm) with salt content (0, 5, 10, 15, and 20 wt%) are obtained. The AC electrical conductivity and dielectric constants are studied as a function of temperature through an impedance technique. It is found that AC conductivity increases and the calculated activation energy decreases with increasing temperature due to enhancement of the ionic conduction in the film bulk. The dielectric constants of the doped membranes increase with temperature. It is found that the peak value of the tanloss is shifted to a higher frequency at higher temperatures. The dielectric behavior is explained on the basis of
... Show MoreIn recent years, nano-modified asphalt has gained significant attraction from researchers in the design of asphalt pavement fields. The recently discovered Titanium dioxide nanoparticles (TiO2) are among the most exciting and promising nanomaterials. This study examines the effect of 1, 3, 5, and 7% of nano-TiO2 by weight of asphalt on some of its rheological and hardened properties. The experimental study included physical and rheological properties. The asphalt penetration, softening point, ductility, and rotational viscometer tests indicate that 5% nano-TiO2 is the ideal amount to be added to bitumen as a modifier. The
Al2O3 and Al2O3–Al composite coatings were deposited on steel specimens using Oxy-acetylene gas thermal spray gun. Alumina was mixed with Aluminum in six groups of concentrations (0, 5, 10,12,15 and 20% ) Al2O3, Specimens were tested for corrosion using Potentiodynamic polarization technique. Further tests were conducted for the effect of temperature on polarization curve and the hardness tests for the coated specimens. At first, Modelling was carried out using MINITAB-19, least square method, as a 2nd degree nonlinear model, bad results were achieved because of the high nonlinearity. Better result w
This contribution reports a comprehensive investigation into the structural, electronic and thermal properties of bulk and surface terbium dioxide (TbO2); a material that enjoys wide spectra of catalytic and optical applications. Our calculated lattice dimension of 5.36 Å agrees well with the corresponding experimental value at 5.22 Å. Density of states configuration of the bulk structure exhibits a semiconducting nature. Thermo-mechanical properties of bulk TbO2 were obtained based on the quasi-harmonic approximation formalism. Heat capacities, thermal expansions and bulk modulus of the bulk TbO2 were obtained under a wide range of temperatures and pressures. The dependency of these properties on operational pressure is very evident. Cle
... Show MoreThe doping process with materials related to carbon has become a newly emerged approach for achieving an improvement in different physical properties for the obtained doped films. Thin films of CuPc: C60 with doping ratio of (100:1) were spin-coated onto pre-cleaned glass substrates at room temperature. The prepared films were annealed at different temperatures of (373, 423 and 473) K. The structural studies, using a specific diffractometry of annealed and as deposited samples showed a polymorphism structure and dominated by CuPc with preferential orientation of the plane (100) of (2θ = 7) except at temperature of 423K which indicated a small peak around (2θ = 3
Photodetector based on Rutile and Anatase TiO2 nanostructures/n-Si Heterojunction
We report on using a CO2 (10.6 µm) laser to debond the lithium disilicate veneers. Sixty-four sound human premolar teeth and 64 veneer specimens were used in the study. The zigzag movement via CO2 laser handpiece along with an air-cooled jet to prevent temperature elevation above the necrosis temperature limit (5.5 C°) was applied. The optimal deboning irradiation time was super-fast, at about 5 seconds at 3 Watt CO2 laser power. It is 20 times less than any previously published work for veneers debonding. The enamel beneath the debonded veneers has been assessed by atomic force microscopy (AFM) and shear stress technique as criteria for the easiness of debonding. The
... Show More