This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
Introduction: Although soap industry is known from hundreds of years, the development accompanied with this industry was little. The development implied the mechanical equipment and the additive materials necessary to produce soap with the best specifications of shape, physical and chemical properties. Objectives: This research studies the use of vacuum reactive distillation VRD technique for soap production. Methods: Olein and Palmitin in the ratio of 3 to 1 were mixed in a flask with NaOH solution in stoichiometric amount under different vacuum pressures from -0.35 to -0.5 bar. Total conversion was reached by using the VRD technique. The soap produced by the VRD method was compared with soap prepared by the reaction - only method which
... Show MoreThe ground state proton, neutron and matter densities and
corresponding root mean square radii of unstable proton-rich 17Ne
and 27P exotic nuclei are studied via the framework of the twofrequency
shell model. The single particle harmonic oscillator wave
functions are used in this model with two different oscillator size
parameters core b and halo , b the former for the core (inner) orbits
whereas the latter for the halo (outer) orbits. Shell model calculations
for core nucleons and for outer (halo) nucleons in exotic nuclei are
performed individually via the computer code OXBASH. Halo
structure of 17Ne and 27P nuclei is confirmed. It is found that the
structure of 17Ne and 27P nuclei have 2
5 / 2 (1d ) an
The theory of general topology view for continuous mappings is general version and is applied for topological graph theory. Separation axioms can be regard as tools for distinguishing objects in information systems. Rough theory is one of map the topology to uncertainty. The aim of this work is to presented graph, continuity, separation properties and rough set to put a new approaches for uncertainty. For the introduce of various levels of approximations, we introduce several levels of continuity and separation axioms on graphs in Gm-closure approximation spaces.
Due to the lack of vehicle-to-infrastructure (V2I) communication in the existing transportation systems, traffic light detection and recognition is essential for advanced driver assistant systems (ADAS) and road infrastructure surveys. Additionally, autonomous vehicles have the potential to change urban transportation by making it safe, economical, sustainable, congestion-free, and transportable in other ways. Because of their limitations, traditional traffic light detection and recognition algorithms are not able to recognize traffic lights as effectively as deep learning-based techniques, which take a lot of time and effort to develop. The main aim of this research is to propose a traffic light detection and recognition model based on
... Show MoreThe concept of semi-essential semimodule has been studied by many researchers.
In this paper, we will develop these results by setting appropriate conditions, and defining new properties, relating to our concept, for example (fully prime semimodule, fully essential semimodule and semi-complement subsemimodule) such that: if for each subsemimodule of -semimodule is prime, then is fully prime. If every semi-essential subsemimodule of -semimodule is essential then is fully essential. Finally, a prime subsemimodule of is called semi-relative intersection complement (briefly, semi-complement) of subsemimodule in , if , and whenever with is a prime subsemimodule in , , then . Furthermore, some res
... Show MoreThe concept of a 2-Absorbing submodule is considered as an essential feature in the field of module theory and has many generalizations. This articale discusses the concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules and their relationship to the 2-Absorbing submodule, Quasi-2-Absorbing submodule, Nearly-2-Absorbing submodule, Pseudo-2-Absorbing submodule, and the rest of the other concepts previously studied. The relationship between them has been studied, explaining that the opposite is not true and that under certain conditions the opposite becomes true. This article aims to study this concept and gives the most important propositions, characterizations, remarks, examples, lemmas, and observations related to it. In the en
... Show MoreIn this work we study gamma modules which are implying full stability or implying by full stability. A gamma module is fully stable if for each gamma submodule of and each homomorphism of into . Many properties and characterizations of these classes of gamma modules are considered. We extend some results from the module to the gamma module theories.
This paper is concerned with introducing and studying the o-space by using out degree system (resp. i-space by using in degree system) which are the core concept in this paper. In addition, the m-lower approximations, the m-upper approximations and ospace and i-space. Furthermore, we introduce near supraopen (near supraclosed) d. g.'s. Finally, the supra-lower approximation, supraupper approximation, supra-accuracy are defined and some of its properties are investigated.
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings
... Show More