Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness of factorization machines for recommendation tasks. The present work introduces a novel hybrid deep factorization machine (FM) model, referred to as ConvFM. The ConvFM model use a combination of feature extraction and convolutional neural networks (CNNs) to extract features from both individuals and things, namely movies. Following this, the proposed model employs a methodology known as factorization machines, which use the FM algorithm. The focus of the CNN is on the extraction of features, which has resulted in a notable improvement in performance. In order to enhance the accuracy of predictions and address the challenges posed by sparsity, the proposed model incorporates both the extracted attributes and explicit interactions between items and users. This paper presents the experimental procedures and outcomes conducted on the Movie Lens dataset. In this discussion, we engage in an analysis of our research outcomes followed by provide recommendations for further action.
Intrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is ope
... Show MoreIn this paper a new method is proposed to perform the N-Radon orthogonal frequency division multiplexing (OFDM), which are equivalent to 4-quadrature amplitude modulation (QAM), 16-QAM, 64-QAM, 256-QAM, ... etc. in spectral efficiency. This non conventional method is proposed in order to reduce the constellation energy and increase spectral efficiency. The proposed method gives a significant improvement in Bit Error Rate performance, and keeps bandwidth efficiency and spectrum shape as good as conventional Fast Fourier Transform based OFDM. The new structure was tested and compared with conventional OFDM for Additive White Gaussian Noise, flat, and multi-path selective fading channels. Simulation tests were generated for different channels
... Show MoreIn this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.
Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are
... Show MoreOptical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and tota
... Show MoreA new, Simple, sensitive and accurate spectrophotometric methods have been developed for the determination of sulfamethoxazole (SMZ) drug in pure and dosage forms. This method based on the reaction of sulfamethoxazole (SMZ) with 1,2-napthoquinone-4-sulphonic acid (NQS) to form Nalkylamono naphthoquinone by replacement of the sulphonate group of the naphthoquinone sulphonic acid by an amino group. The colored chromogen shows absorption maximum at 460 nm. The optimum conditions of condensation reaction forms were investigated by (1) univariable method, by optimizing the effect of experimental variables (different bases, reagent concentration, borax concentration and reaction time), (2) central composite design (CCD) including the effect of
... Show More