Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of the study is the generated data sets obtained on the basis of theoretical stress relaxation curves. Tables of initial data for training models for all samples are presented, a statistical analysis of the characteristics of the initial data sets is carried out. The total number of numerical experiments for all samples was 346020 variations. When developing the models, CatBoost artificial intelligence methods were used, regularization methods (Weight Decay, Decoupled Weight Decay Regularization, Augmentation) were used to improve the accuracy of the model, and the Z-Score method was used to normalize the data. As a result of the study, intelligent models were developed to determine the rheological parameters of polymers included in the generalized non-linear Maxwell-Gurevich equation (initial relaxation viscosity, velocity modulus) using generated data sets for the EDT-10 epoxy binder as an example. Based on the results of testing the models, the quality of the models was assessed, graphs of forecasts for trainees and test samples, graphs of forecast errors were plotted. Intelligent models are based on the CatBoost algorithm and implemented in the Jupyter Notebook environment in Python. The constructed models have passed the quality assessment according to the following metrics: MAE, MSE, RMSE, MAPE. The maximum value of model error predictions was 0.86 for the MAPE metric, and the minimum value of model error predictions was 0.001 for the MSE metric. Model performance estimates obtained during testing are valid.
Purpose: Determining and identifying the relationships of smart strategic education systems and their potential effects on sustainable success in managing clouding electronic business networks according to green, economic and environmental logic based on vigilance and awareness of the strategic mind.
Design: Designing a hypothetical model that reveals the role and investigating audit and cloud electronic governance according to a philosophy that highlights smart strategic learning processes, identifying its assumptions in cloud spaces, choosing its tools, what it costs to devise expert minds, and strategic intelligence.
Methodology:
The current research aims at detecting Brain Dominance Learning Styles distinguished
and ordinary secondary school students (males and females).The researcher adopted Torrance
measure, known as ‘the style of your learning and thinking to measure Brain Dominance
Learning Styles’, the codified version of Joseph Qitami (1986); picture (a). The researcher
verified the standard properties of tool. The final application sample was 352 distinguished
and ordinary students; 176 distinguished male and female students and 176 ordinary male and
female students at the scientific fifth level of secondary school from schools in the province of
Baghdad, AL- KarKh Education Directorates in the First and Second . and who have been
Purpose: To contribute to the development of an appropriate program for the management of medical waste based on clear-cut principles in order to reach the overall goal of improving the public health and environment of the population in our country.
Design / Approach / Introduction: The research is based on the analytical descriptive approach as a method of study in the field of data collection using a check list and analysis of the data through the use of some statistical treatments.
Results: The need is to establish a medical waste management in hospitals and follow international standards in all stages of waste management from sorting, collection, transportation and treat
... Show MoreAccurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty
... Show MoreLearning Disabilities are described as a hidden and puzzling disability. Children with these difficulties have the potential to hide weaknesses in their performance because they are a homogenous group of disorders that consist of obvious difficulties in acquiring and using reading, writing, Mathematical inference. Thus, the research aims to identify the disabilities of academic learning in (reading, writing, mathematics), identify the problems of behavior (general, motor, social). Identify the relationship among behaviour problems. The research also aims to identify the counseling needs to reduce the behavioral problems. The researcher adopted the analytical descriptive method by preparing two main tools for measuring learning disabiliti
... Show MoreThe presented study investigated the scheduling regarding jobs on a single machine. Each job will be processed with no interruptions and becomes available for the processing at time 0. The aim is finding a processing order with regard to jobs, minimizing total completion time , total late work , and maximal tardiness which is an NP-hard problem. In the theoretical part of the present work, the mathematical formula for the examined problem will be presented, and a sub-problem of the original problem of minimizing the multi-objective functions is introduced. Also, then the importance regarding the dominance rule (DR) that could be applied to the problem to improve good solutions will be shown. While in the practical part, two
... Show MoreThe role of relaxation program for reducing anxiety of patients in dental clinic
Abstract
Objectives: To find out the association between enhancing learning needs and demographic characteristic of (gender, education level and age).
Methods: This study was conducted on purposive sample was selected to obtain representative and accurate data consisting of (90) patients who are in a peroid of recovering from myocardial infarction at Missan Center for Cardiac Diseases and Surgery, (10) patients were excluded for the pilot study, Data were analyzed using descriptive statistical data analysis approach of frequency, percentage, and analysis of variance (ANOVA).
Results: The study finding shows, there was sign
... Show MoreThe aim of the research is to identify learning difficulties and their role in children's perception of self-concept. The researcher adopted the descriptive and analytical approach method in this study. A questionnaire was designed by the researcher to collect some related information such as biodata, family, health, diagnostic and behavioral patterns of the case. In addition, the researcher adopted the scale of learning difficulties for elementary school students prepared by Zaidan Ahmed Al-Sartawi (1995), the scale of student appreciation for the survey of learning difficulties for primary school students by Michael Best, which was translated to the Arabic language by (Saeed Abdullah Debis). The researcher adopted also the Self-Concept
... Show MoreIn this study, the stress-strength model R = P(Y < X < Z) is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used to estimate the parameters namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.