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Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing 
crop productivity and adaptability to diverse environments. In the present study, a machine learning 
framework was developed using Random Forest and Multi-layer Perceptron algorithms to model 
and predict key morphological traits, branch number, growth period, boll number, and seed number 
per plant, based on genotype and planting date. The dataset was generated from a field experiment 
involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive 
capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 
0.80), underscoring its efficacy in capturing the nonlinear genotype-by-environment interactions. 
Permutation-based feature importance analysis further revealed that planting date had a more 
significant impact on trait variation than genotype. To identify optimal combinations of genotype 
and planting date for maximizing morphological traits, the RF model was integrated with the Non-
dominated Sorting Genetic Algorithm II (NSGA-II). According to the RF–NSGA-II optimization results, 
the optimal values, including 26 branches per plant, a growth period of 176 days, 116 bolls per plant, 
and 1517 seed numbers per plant, were achieved with the Qaleganj genotype planted on May 5. 
Collectively, these findings highlight the potential of integrating machine learning and evolutionary 
optimization algorithms as powerful computational tools for crop improvement and agronomic 
decision-making.
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Roselle (Hibiscus sabdariffa L.) is an annual herbaceous plant belonging to the Malvaceae family that is widely 
cultivated in tropical and subtropical regions due to its high adaptability and drought tolerance. Various parts 
of the plant, including the flowers, stem fiber, leaves, seeds, fruits, and roots, are multi-purpose in the food and 
medicinal industries. Among various parts of the plant, the bright red fleshy calyx holds the most significant 
economic value, which contains vitamin C, iron, beta-carotene, anthocyanins, and phenolic compounds1. 
Additionally, roselle seeds contain high levels of protein, vitamin E, and unsaturated fatty acids such as oleic 
and linoleic acids2. In recent years, global demand for roselle and its processed products has increased steadily, 
particularly in the health food and natural product markets3.

Plant growth and development are influenced by a variety of environmental and genetic factors. Among 
these, the selection of suitable genotypes and the determination of optimal planting dates are critical agronomic 
decisions that directly impact plant performance3. Genotype selection allows breeders to identify plant varieties 
with favorable characteristics such as early maturity, high yield, and resistance to environmental stress4. The 
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results of research conducted on different genotypes of roselle indicate that these traits have high heritability 
and are largely influenced by genetic factors5. It has been reported that there are significant differences among 
genotypes in terms of flower and leaf production and nutrient density6. Multiple studies have shown that delayed 
sowing can significantly reduce crop yield, including plant height, number of bolls, biomass, calyx, and seed 
yield. Also, early planting leads to a longer growth period and more desirable growth traits7. Planting date has 
also been reported to significantly affect the growth and yield of Roselle, with July sowing leading to earlier 
flowering, a higher number of flower buds, and longer calyxes8. Furthermore, planting on May 15 has been 
associated with the best performance in terms of vegetative growth, such as plant height, stem diameter, number 
of branches, and number of fruits, and yield components including fresh and dry weights of shoots, calyces, and 
seeds7.

However, the interaction between genotype and planting date is complex and non-linear, requiring advanced 
modeling approaches to accurately predict outcomes and make informed recommendations. Traditional 
statistical methods, while useful, often fall short in capturing the non-linear interactions and high-dimensional 
relationships among multiple plant traits and environmental variables. In contrast, machine learning (ML) 
techniques offer powerful alternatives by learning patterns from historical data without relying on predefined 
models9. Among these, Random Forest (RF) and Multi-layer Perceptron (MLP) are popular ML algorithms 
used in agricultural modeling due to their flexibility and robustness. MLP, as a type of feed-forward artificial 
neural network (ANN), is particularly known for its ability to model highly nonlinear functions due to its deep 
architecture composed of interconnected neurons and hidden layers9. RF is a widely used ensemble machine 
learning algorithm that offers a balance between simplicity, accuracy, and robustness. It has gained popularity 
across various domains, including biological and agricultural research, due to its reliable predictive capabilities 
and flexibility in handling both classification and regression tasks. Structurally, an RF model consists of an 
ensemble of decision trees, each trained on a random subset of the original dataset using the bootstrap aggregation 
(bagging) technique. At each node of every tree, a random subset of features is considered for splitting, which 
helps to reduce correlation between trees and improve generalization. The final prediction of the RF model is 
obtained by aggregating the outputs of all individual trees through majority voting for classification or averaging 
for regression. This ensemble approach enhances accuracy, reduces variance, and mitigates overfitting, making 
RF particularly suitable for modeling complex, noisy, high-dimensional, and imbalanced datasets10,11.

In biosystems, prediction alone is insufficient, and decision-making often involves balancing multiple 
conflicting objectives. Among the various optimization approaches, evolutionary algorithms, particularly the 
Non-dominated Sorting Genetic Algorithm II (NSGA-II), address this challenge by identifying a set of optimal 
solutions known as the Pareto front12,13. NSGA-II, first introduced by Deb et al.14has become one of the most 
popular and widely applied algorithms for solving multi-objective optimization problems due to its simplicity, 
efficiency, and ability to maintain solution diversity through crowding distance calculation. Unlike single-objective 
genetic algorithms, NSGA-II can handle multiple objectives simultaneously and identify a set of Pareto-optimal 
solutions, representing the best trade-offs between conflicting goals. These solutions offer decision-makers a 
spectrum of options, enabling tailored strategies based on specific priorities and constraints12,14. The integration 
of ML models with NSGA-II provides a synergistic framework that leverages the strengths of both approaches9,15. 
The integration of ML with optimization algorithms has been successfully applied in various domains of plant 
science. For instance, ML–NSGA-II frameworks have been employed to optimize growth regulator combinations 
in plant tissue culture systems9,11 enhance secondary metabolite production in plants16 predict plant responses 
to drought and salinity stress15,17 and estimate crop yield and agronomic traits18. Recently, the efficiency of the 
ANN-NSGA II model was used to predict and optimize pomegranate morphological traits under salinity and 
drought stress influenced by γ-aminobutyric acid. This approach helped identify optimal treatment conditions 
and provided insights into improving stress tolerance15. Moreover, in a study, the combination of ML algorithms 
and genetic optimization was employed to model and optimize soybean yield based on its component traits. This 
integrated approach provided a better understanding of the relationships between yield and its morphological 
components. It can be effectively used in selecting parental lines and designing crosses aimed at improving 
the genetic yield potential of soybean cultivars19. These applications underscore the growing relevance of data-
driven modeling approaches in addressing complex, multi-objective problems in plant biology.

The present study aims to develop an integrated framework for predicting and optimizing the main agronomic 
traits of Roselle, focusing on four key traits, including the number of branches, growth period, number of bolls, 
and seeds per plant. Using a comprehensive dataset collected from a field experiment, we trained and compared 
the performance of two ML models, followed by the application of NSGA-II for multi-objective optimization. 
While ML models ensure the accurate prediction of morphological traits based on genotype and planting date, 
NSGA-II enables the optimization of these traits under a multi-objective setting, assisting in the selection of 
the best genotype–planning date combinations that meet multiple morphological targets simultaneously. The 
novelty of this study lies in its data-driven approach to simultaneously address traits prediction and optimal 
genotype-date selection. Specifically, the objectives are to:

(1) examine how different planting dates and genotype combinations influence roselle’s morphological 
performance,

(2) identify stable and high-performing genotypes across diverse environmental conditions,
(3) develop predictive ML models that can accurately forecast key traits based on genotype and planting date, 

and.
(4) employ cutting-edge multi-objective optimization algorithms to recommend the most effective genotype–

planting date combinations that maximize crop yield. The insights derived from this model can inform breeding 
programs and cultivation planning, contributing to sustainable and high-yielding Roselle production systems.
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Materials and methods
Plant materials and experimental design
The field experiment was conducted in Dalgan (27° 28′ N, 59° 27′ E; 389 m a.s.l.), located in Sistan and Baluchestan 
province, southeast Iran. The region has a hot-arid climate, with minimal rainfall and high summer temperatures. 
A detailed climatic condition has been illustrated in Fig. S1. The soil texture was loam with a pH of 7.6 and EC 
of 2.12 dS m⁻¹. A detailed chemical and physical soil characteristics has been mentioned in Table S1. After land 
preparation, before sowing, 25 kg/ha of triple superphosphate fertilizer was added to the soil and mixed in by a 
light disc. Nitrogen fertilization was performed at the six-leaf stage by applying urea as a foliar solution at a rate 
of 30 kg ha⁻¹. The study employed a factorial experimental design based on a randomized complete block design 
(RCBD) with three replications. The experimental treatments consisted of ten roselle genotypes including eight 
native accessions Jiroft, Dalgan, Bampoor, Iranshahr, Nikshahr, Roodbar, Saravan, and Qaleganj were collected 
from different agro-ecological zones of Iran, along with two exotic landraces: HA (originating from Ghana) and 
HS-24 (from Bangladesh), both supplied by the Jiroft Agricultural Research Station. The ten genotypes were 
sown under five different planting dates: March 6, April 6, May 5, June 5, and July 1. Each genotype × planting 
date combination was replicated three times, resulting in a total of 150 experimental units.

Morphological trait measurement
Morphological trait measurements were performed at the physiological maturity stage, defined as the point 
when approximately 70% of the seeds within each flower capsule had browned and the sepals had reached 
their maximum development. The following traits were recorded for each genotype and planting date treatment: 
plant height, number of branches per plant, fruit length, number of bolls per plant, fresh sepal weight per plant, 
number of seeds per capsule, seed weight per plant, 1000-seed weight, biomass yield, harvest index, calyx yield, 
and growth period (life cycle duration). The morphological variation of sepals among the studied genotypes is 
shown in Supplementary Fig. S2. This visual comparison clearly highlights the differences in sepal size, shape, 
and pigmentation among the studied accessions.

Data Pre-processing, and statistical analyses
The dataset included ten genotypes and five planting dates, with four primary output traits: number of branches, 
growth period, number of bolls, and seed yield per plant. Input features were encoded using one-hot encoding, 
and the output variables were normalized using z-score standardization. Outlier detection and removal were 
conducted to enhance data quality using two complementary techniques: the interquartile range (IQR) method 
and the Z-score method. In the IQR method, any data point lying outside the range of Q1 − 1.5 × IQR or Q3 + 1.5 
× IQR was considered an outlier. In the Z-score method, samples with absolute Z-score values greater than 3.0 
were flagged and removed. Prior to model training, a two-step statistical analysis was conducted to evaluate the 
relevance of each phenotypic trait with respect to the input variables (genotype and planting date). First, Pearson 
correlation analysis was conducted using Python (version 3.11.12) to assess the linear relationship between 
inputs and each target. Subsequently, a two-way analysis of variance (ANOVA) was conducted to determine the 
statistical significance of the main factors (genotype and planting date) and their interaction on each trait. The 
two-way ANOVA was performed using the statsmodels Python library (version 0.14.0), specifically employing 
the ols function from the statsmodels. formula.api module to fit the linear model and the anova_lm function 
from statsmodels.api to compute the ANOVA table based on Type II sum of squares. In Type II ANOVA, each 
main factor (such as genotype or planting date) is evaluated separately while considering the influence of the 
other factors, but without including their interaction. This approach makes it easier to understand the individual 
effect of each factor and leads to clearer and more straightforward interpretation of the results. The dataset was 
split into 80% (120 samples) for training and 20% (30 samples) for testing.

Hyperparameter optimization in ML models
In machine learning, prior optimization and tuning of model hyperparameters are critical steps that significantly 
affect predictive performance and generalization ability. In this study, a structured grid search algorithm, Grid 
Search Cross Validation (GridSearchCV) was used for hyperparameter tuning of two ML models, MLP and RF, 
in combination with 10-fold cross-validation. During the K-fold cross-validation process (K = 10), the dataset 
was randomly partitioned into 10 subsets. Each subset served once as a validation set while the remaining 
subsets were used to train the model. This approach ensured that every data point contributed to both training 
and validation, thereby reducing the risk of overfitting or underfitting. The hyperparameter combinations 
yielding the highest cross-validated R² scores and lowest generalization errors on the test set were selected as the 
optimal configuration. The hyperparameters and their corresponding search spaces used in the GridSearchCV 
procedure are summarized in Table S2.

Description of ML models and optimization algorithm
Model development
In this study, a supervised ML framework was developed to predict agronomic traits of roselle as influenced by 
genotype and planting date. Two models, MLP and RF, were implemented within a unified scikit-learn20 pipeline 
structure. Each model was trained and evaluated based on multi-output regression performance (Fig. 1).

RF model
For a single decision tree with L terminal leaves, the input feature space is partitioned into R non-overlapping 
regions Rm such that the prediction function is defined as:
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f (x) =

∑
R
m=1Cm.Π (x, Rm )� (1)

where cm represents the predicted constant value in region Rm, and Π (x,Rm) is an indicator function defined by:

	
Π (x, Rm ) =

{
x ∈ Rm

0, otherwise � (2)

The final RF prediction for an input sample x is obtained by averaging the outputs of all T individual trees. The 
final prediction ŷ for an input x is the average of predictions from all trees:

	
? =

( 1
T

) ∑
T
t=1ft (x)� (3)

where ft(x) is the output of the tth tree. This ensemble averaging mechanism enhances the predictive performance 
by reducing variance, improving robustness across different training subsets, and minimizing the risk of 
overfitting. In this study, the RF model was configured with 50 estimators (n_estimators = 50) and a maximum 
depth of 5 per tree (max_depth = 5). At each node, a random subset of predictors was selected to determine the 
best split, which encourages diversity among the trees and improves generalization.

MLP model
In this study, MLP model was implemented as a supervised learning algorithm consisting of three layers: an 
input layer, two hidden layers with five neurons each (5, 5), and a single output layer. The input vector x = [x1, x2, 
…,xn], representing genotype and planting date encoded via one-hot encoding, was passed through the hidden 
layers, each employing the hyperbolic tangent activation function (tanh):

	
hj = tanh(

∑
wji · xi + bj)� (4)

Fig. 1.  Schematic diagram of the procedure used in this study, modeling morphological traits based on two 
input variables, including roselle genotypes and planting dates, using Random Forest (RF) and multilayer 
perceptron (MLP), and the step-by-step optimization process of morphological traits via non-dominated 
sorting genetic algorithm-II (NSGA-II).
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ith input and the jth hidden neuron, bj is the bias for the jth neuron, and tanh() is the hyperbolic tangent 
activation function. The final output ŷ, representing predicted plant traits (branch number, growth period, boll 
number, and seed yield), was computed through a linear activation function:

	
ŷ =

∑
wj · hj + b0� (5)

wj is the weight connecting the jth hidden neuron to the output, and b0 is the output bias.
The model was trained using the Adam optimizer with a maximum of 1000 iterations. To improve 

generalization and prevent overfitting, L2 regularization (weight decay) was incorporated via the alpha 
parameter, set to 1. Accordingly, the loss function minimized during training was defined as the regularized 
mean squared error (MSE):

	
MSE =

( 1
K

) ∑
(yk − ŷk)2 + a

∑
w2

j � (6)

where K is the number of training samples, ŷk is the predicted output for the kth sample, and α = 1 is the 
regularization parameter controlling the penalty applied to large weights. This formulation penalizes large 
weights and enhances the model’s robustness against noise and overfitting. The architecture and number of 
hidden neurons were selected based on a combination of empirical trial-and-error and structured grid search 
optimization, ensuring the best trade-off between complexity and predictive accuracy.

Model performance evaluation
To evaluate the performance of the developed ML models, several statistical indicators were employed, including 
the coefficient of determination (R²), root mean square error (RMSE), mean absolute percentage error (MAPE), 
and mean bias error (MBE). These metrics provide a comprehensive assessment of the model’s accuracy, 
precision, and bias. These quantitative indicators can be found in Table 1. They were computed for both training 
and testing subsets to ensure the generalization capability of the models across unseen data. The prediction 
results for each target trait were subsequently compared and visualized through scatter plots of observed vs. 
predicted values (Fig. 3a-h). The two implemented models were then compared based on these performance 
metrics in the investigated targets.

Permutation-based feature importance
To assess the relative contribution of each input feature to the model’s predictive performance, permutation-based 
feature importance analysis was performed for the RF and MLP models21. For each model, a MultiOutputRegressor 
was trained and evaluated, and permutation importance was computed separately for each target trait: number 
of branches, growth period, number of bolls, and seed yield per plant. The permutation importance method 
involves randomly shuffling the values of each feature and observing the resulting change in prediction error21. 
This process was repeated 50 times to obtain a stable estimate of feature relevance. The procedure was applied to 
the test set after transforming it using the model’s preprocessing pipeline (including standardization and one-hot 
encoding). The importance scores were averaged across all repetitions, and the results were visualized using bar 
plots for each target trait and also aggregated to assess global feature influence. The implementation was carried 
out using the Scikit-learn library (version 1.3.2)20 via the permutation_importance function. The results were 
visualized using bar plots to highlight the most influential genotype and planting date combinations (Fig. 4).

Optimization of ML model via NSGA-II
To identify optimal genotype and planting date combinations for maximizing agronomic performance, the best-
performing ML model, RF, was employed as a fitness function and integrated with the NSGA-II for multi-
objective optimization (Fig. 1). The initial population of candidate solutions was randomly generated, and the 
Tournament Selection method with Crowding Distance Comparison (selTournamentDCD), implemented in 
the DEAP library, was used to select elite individuals. In this method, two individuals are randomly selected and 
compared first based on their Pareto rank, and if they belong to the same non-dominated front, the one with the 
higher crowding distance is selected22. This mechanism promotes both convergence and diversity by preferring 
individuals located in sparsely populated areas of the objective space. The concept of Pareto dominance states 
that a solution A dominates solution B if it is no worse than B in all objectives and strictly better in at least one, 

Metric Formula Description

R² (Coefficient of Determination) R² = 1 - (Σ (yi - ŷi)²) / (Σ (yi - ȳ)²) R² indicates the proportion of the variance in the observed values explained by the model. 
A higher R² value (closer to 1) reflects better model performance and fit.

RMSE (Root Mean Squared Error) RMSE = √[(1/n) Σ (yi - ŷi)²] RMSE measures the standard deviation of prediction errors. It quantifies the model’s ability 
to predict observed values close to actual ones. Lower values indicate higher accuracy.

MAPE (Mean Absolute Percentage Error) MAPE = (100/n) Σ |(yi - ŷi) / yi|
MAPE expresses the average absolute error as a percentage of actual values. It allows for 
easy interpretation and comparison across different scales or units.

MBE (Mean Bias Error) MBE = (1/n) Σ (ŷi - yi)
MBE quantifies the average bias in predictions, indicating whether a model tends to 
overestimate (positive MBE) or underestimate (negative MBE) values.

Table 1.  Description of regression evaluation metrics. Where yi: observed value, ŷi: predicted value, ȳ: mean of 
observed values, n: number of samples.
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forming the basis for constructing non-dominated fronts12,14,23. Within each front, the crowding distance of a 
solution is computed as the average normalized distance to its adjacent neighbors across all objectives, serving 
as an estimate of local solution density. Higher crowding distance values indicate greater isolation, which helps 
in maintaining diversity and avoiding premature convergence during the evolutionary process22. To improve the 
quality of the optimization, key parameters, including population size, number of generations, crossover rate, 
and mutation rate, were optimized through trial and error22,23. The final configuration included a population 
size of 100, 200 generations, a crossover probability of 0.9, and a mutation probability of 0.1. The distribution 
indices for crossover and mutation operators were set to 15 and 20, respectively, to control the extent of variation 
introduced in offspring.

All analyses and model implementations were conducted in Python (version 3.11.12)20. Key libraries utilized 
include scikit-learn (version 1.3.2)20 for data preprocessing, hyperparameter tuning, model development, 
performance evaluation, and feature importance analysis (via the permutation_importance function). Moreover, 
the multi-objective optimization algorithm NSGA-II was implemented using the deap library (version 1.4.2)22. 
To ensure the reproducibility of the results, a fixed random seed (random_state = 42) was applied consistently 
across all stages of the analysis, including data splitting, model training, optimization, and hyperparameter 
tuning.

Results
Correlation coefficient, and statistical analyses
Comprehensive correlation and two-way ANOVA analyses were conducted to evaluate the influence of genotype 
and planting date on a broad set of morphological and yield traits in Roselle. The correlation results (Fig. 2a) 
revealed that most traits were more strongly associated with planting date than with genotype, highlighting the 
dominant role of temporal factors in trait variation. Notably, branch number exhibited the highest correlation 
with planting date (r = 0.63), followed by sepal weight (r = 0.49), calyx size (r = 0.47), harvest index (r = 0.34), and 
boll number (r = 0.31). In contrast, correlations with genotype were consistently weak, with the highest observed 
for seed per plant (r = 0.082) and negligible values for other traits, including a slight negative correlation for plant 
height (r = − 0.12). Based on these findings, traits with minimal correlation to either input, such as plant height, 
calyx, harvest index, and sepal weight, were excluded from further modeling to enhance predictive clarity and 
reduce noise. Complementing the correlation analysis, two-way ANOVA was performed to assess the statistical 
significance of genotype, planting date, and their interaction (G×E) on each trait (Fig.  2b). Our findings 
highlight that planting date consistently emerged as the most influential factor across most traits, underscoring 
the critical role of environmental conditions and sowing time in shaping Roselle performance. Traits such as 
branch number, boll number, and seed yield per plant demonstrated highly significant responses (p < 0.01) to all 
three factors, genotype, planting date, and their interaction, suggesting that these traits are highly responsive to 
both genotype and planting date. In contrast, traits such as harvest index, growth period, sepal weight, and calyx 
size were mainly influenced by planting date and G×E interaction, but not by genotype (p > 0.05), highlighting 
their strong environmental dependence. Overall, among all the morphological traits measured in this study, 
branch number, boll number, seed per plant, and growth period were selected as the final targets for predictive 
modeling and optimization.

Model performance evaluation
In this study, RF and MLP models were used to predict morphological parameters based on genotype and planting 
date. The performances of both models are presented in Table 2. The accuracy of each model was evaluated by 
R², RMSE, MBE, and MAPE. The results show that two models provided acceptable levels of accuracy. however, 
among the models tested, the RF algorithm (R² = 0.84) outperformed the MLP (R² = 0.80) in most of the target 

Fig. 2.  (a) The correlation heatmap between plant traits (targets) and two input variables: genotype and 
planting date. (b) The heatmap of ANOVA p-values showing the significance of genotype, planting date, and 
their interaction on each trait. The significance level of each factor is represented both numerically and by 
asterisks: * for p < 0.05, ** for p < 0.01, and *** for p < 0.001.
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traits. Specifically, the RF model yielded the highest R² and lowest error values in the majority of traits, indicating 
robust generalization ability and a well-fitted predictive structure. The regression lines demonstrated a good fit 
correlation between the observed and predicted data for all growth parameters during the training and testing 
processes of the RF model (Fig. 3a-h).

Feature importance evaluation
The permutation importance analysis revealed clear and consistent patterns regarding the relative influence of 
each feature, including planting date and genotype, on the prediction of Roselle morphological traits (Fig. 4a-
d). Among the evaluated features, including five planting dates and ten genotypes, planting date emerged as the 
dominant factor across most traits. According to the results, planting dates (particularly May, April, and March) 
showed the highest importance scores, indicating their dominant role in predicting Roselle morphological 
traits (Fig. S3). Traits such as branch number, growth period, and boll number demonstrated high sensitivity to 
planting date. In terms of genotypic influence, although generally less impactful than planting date, the genotypes 
Iranshahr, HA, and Qaleganj showed relatively higher importance in specific traits (Fig. S3). For branch number 
and boll count, ‘Iranshahr’ and ‘Qaleganj’ emerged as the most influential genotypes, contributing noticeably to 
model predictions. In the case of the growth period, ‘HA’ was the most prominent genotype, though its influence 
remained modest compared to planting date. For seed per plant, both planting date and genotype exhibited 
very low importance, indicating limited predictability and a likely dependence on unmeasured physiological 
or environmental factors. Overall, despite their lower importance in morphological trait prediction in Roselle, 
genotypes may still hold distinct value for targeted breeding programs, particularly when aligned with optimized 
planting schedules.

Model optimization using NSGA-II
The NSGA-II algorithm was integrated with the RF model, as the most accurate predictive algorithm, in this 
study. The combined RF-NSGA-II model effectively determined the optimal values of the input variables 
(genotype and planting date) to simultaneously maximize four agronomic traits: branch number, growth period, 
boll number, and seeds per plant. The results of the multi-objective optimization process using the NSGA-II 
algorithm are summarized in Table 3. The theoretically optimal performance can be achieved with the genotype 
Qaleganj and the planting date of May, yielding the predicted trait values of branch number, growth duration, 
boll number, and seed production per plant, 26.009, 175.872, 116.078, and 1517.165, respectively.

Discussion
Yield prediction has an important role in crop farming aimed at efficient and sustainable production. Accurate 
and timely predictions are important for farmers’ decision-making regarding genotype selection, planting date, 
irrigation, fertilization, harvesting, and trading24. Yield prediction in crop science is inherently challenging 
because of the multifaceted interactions among genetic factors (G), environmental conditions (E), and 
management practices25. Traditional linear models, including multiple linear regression and correlation-based 
approaches, often fall short in capturing these nonlinear, dynamic relationships, particularly under variable 
environmental contexts10. In contrast, ML models such as RF, support vector regression (SVR), ANNs, and deep 

Model Subset Criterion branch growth_period boll seedperplant

RF

Training

R2 0.857 0.969 0.856 0.702

RMSE 1.90 5.59 8.33 190.15

MBE 0.007 0.020 0.141 -3.856

MAPE 0.097 0.025 0.083 0.181

Testing

R2 0.845 0.956 0.861 0.681

RMSE 1.88 6.72 8.49 199.83

MBE -0.21 -0.33 -1.17 17.45

MAPE 0.093 0.031 0.089 0.198

MLP

Training

R2 0.871 0.967 0.860 0.755

RMSE 1.81 5.81 8.23 172.66

MBE -0.005 -0.002 0.004 0.758

MAPE 0.092 0.026 0.077 0.160

Testing

R2 0.860 0.953 0.821 0.739

RMSE 1.99 6.83 8.98 210.12

MBE -0.356 -0.259 -1.285 28.62

MAPE 0.105 0.032 0.096 0.220

Table 2.  Comparison statistics of MLP and RF models for various morphological traits of H. sabdariffa under 
training and testing conditions. Traits include branch number (branch), growth period (growth_period), 
number of bolls per plant (boll), and seeds per plant (seedperplant). R², coefficient of determination; RMSE, 
root mean square error; MBE, mean bias error; MAPE, mean absolute percentage error.
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learning (DL) architectures have emerged as robust alternatives, offering improved accuracy and adaptability in 
diverse agricultural scenarios25.

Beyond predictive accuracy, model complexity and computational efficiency are important considerations 
in agricultural ML applications. In this study, both the RF and MLP models were evaluated not only in terms of 
prediction accuracy but also in terms of training time and resource demands. Although the difference in predictive 
performance between RF (R² ≈ 0.84) and MLP (R² ≈ 0.80) was relatively small, RF consistently outperformed 

Fig. 3.  The scatter plot of observed values vs. predicted values of (a, b) branch number (Training) and 
(Testing), (c, d) boll number (Training) and (Testing), (e, f) seed per plant (Training) and (Testing), (g, h) 
growth period (Training) and (Testing) obtained by the Random Forest (RF) model. The dotted line represents 
the fitted simple linear regression line across the scatter points, highlighting the relationship between observed 
and predicted values for each trait and reflecting the model’s predictive trend.
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MLP across all yield-related traits. The ensemble structure of RF, which aggregates predictions from multiple 
decorrelated decision trees, helps mitigate overfitting and improves generalizability, especially when dealing with 
noisy or limited agricultural datasets26,27. In contrast, MLP models require extensive hyperparameter tuning 
(e.g., hidden layer architecture, learning rates, activation functions) and iterative training using gradient-based 
optimization. This complexity not only increases the risk of overfitting but also significantly extends training 
and tuning times. From a computational standpoint, RF was faster to train and tune using GridSearchCV 
with 10-fold cross-validation, while MLP incurred notably higher computational costs due to its sensitivity 
to network configuration and the need for convergence over many iterations. This makes RF more suitable 
for rapid deployment and real-time use in field settings or resource-constrained environments26,27. Therefore, 
while MLP may offer additional flexibility in modeling complex nonlinear interactions, RF was selected as a 

Fig. 3.  (continued)
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more interpretable, computationally efficient, and robust model in the context of Roselle yield prediction under 
diverse genotype × environment interactions.

Permutation importance analysis identified planting date as the most influential factor across most traits, 
overshadowing the contributions of genotype. This aligns with findings of previous studies, which have 
consistently highlighted early planting as a critical determinant of biomass accumulation and overall productivity 
in Roselle8,28. Early planting dates (March to May) likely provide more favorable thermal and photoperiodic 
conditions, enhancing growth rates and extending the vegetative phase, and eventually improving the yield7.

Although genotype had a comparatively lesser effect, its role was not negligible. Specific genotypes such as 
Iranshahr and Qaleganj demonstrated higher predictive importance for branch number and boll count, while the 
HA genotype showed prominence in extending the growth period. These findings corroborate earlier observations, 
which identified substantial genetic variability in Roselle for key yield-contributing traits, including plant height, 
branching, calyx yield, fiber production, and nutritional composition29,30. Collectively, these studies highlight the 
considerable potential for selective breeding and genetic improvement in Roselle, emphasizing the importance 
of exploiting this variability to develop high-yielding and resilient cultivars. High heritability observed in traits 
such as plant height and number of branches suggests that these are primarily governed by genetic factors and 
can be effectively improved through selection. The interactions between genotype and planting date observed in 
this study suggest that while environmental timing is the primary driver of trait variability, genotype selection 
can further refine yield performance when optimized within suitable environmental windows. Moreover, our 
study revealed that seed yield per plant consistently exhibited low predictive importance for both planting date 
and genotype, suggesting a reliance on factors not directly captured in this dataset. This finding underscores 
the complexity and multifaceted nature of seed production in Roselle. Specifically, it highlights that while other 
morphological traits (such as branch number and boll count) are primarily shaped by genotype and planting 
date, seed yield is more strongly influenced by unmeasured physiological and environmental interactions. Our 

Input Items Output Items

Genotype Planting date Predicted Branch number Predicted growth period Predicted boll number Predicted seed per plant

Qaleganj May 26.009 175.872 116.078 1517.165

Table 3.  Optimization of genotype and planting date of roselle according to the RF-NSGA-II algorithm to 
obtain the best morphological traits, including number of branches, growth period, number of bolls, and 
number of seeds per plant.

 

Fig. 4.  Bar plots of feature importance in the RF model showing the influence of planting dates and different 
genotypes in predicting Roselle yield traits: (a) branch number; (b) growth period; (c) boll number and (d) 
seed per plant. To improve clarity and avoid overloading the plots, only the top-ranked input features were 
visualized in the feature importance graphs, although all encoded genotype × planting date combinations were 
included in the analysis.
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findings are consistent with earlier studies that have underscored the pivotal role of micro-environmental and 
physiological factors in determining seed production in Roselle29,31. These factors include variations in plant 
morphology, soil moisture levels, and physiological responses to environmental stressors, all of which contribute 
significantly to yield differences across genotypes30. In the permutation feature importance plots (Fig. 4), it is 
observed that some features have negative values. In permutation importance analysis, the value of a feature is 
randomly permuted in the dataset to assess its impact on model performance. Typically, a decrease in model 
performance after permuting a feature indicates a high importance of that feature in the prediction process. 
However, in some cases, permuting a feature leads to a slight improvement in model performance, which 
appears as a negative importance value. This phenomenon often occurs when the feature in question contains 
noise, redundant information, or weak content, and has harmed the model’s predictions21. Such features may 
cause a decrease in accuracy by perturbing the patterns learned by the model, and therefore, removing or 
ignoring them can slightly improve model performance. Additionally, negative significance values can be an 
indication of multicollinearity, a condition in which multiple features are highly correlated and the model is 
overfitted. In such cases, removing one of the correlated features can reduce the model’s complexity and increase 
its generalizability. Also, statistical fluctuations can cause false negatives in significance analysis when the test 
set is small or variable32. In general, the presence of negative values in the permutation test is not necessarily 
a cause for concern, but can provide useful information about features that not only do not play a useful role 
in prediction, but may also weaken the generalizability of the model. These findings suggest opportunities for 
dimensionality reduction and improving generalizability without sacrificing model accuracy.

After diagnosing the RF model as the best model based on the highest accuracy, the NSGA-II algorithm was 
linked to it. The results of the RF-NSGA-II algorithm highlighted the combination of the Qaleganj genotype and 
a planting date of May 5 as the best compromise or optimal point for maximizing morphological traits, among 
the studied scenarios. This was not the result of a single-objective maximization but rather the consequence of 
a multi-objective search that balanced conflicting agronomic goals, maximizing branch number, boll number, 
and seed yield per plant, while simultaneously minimizing growth duration. The NSGA-II framework enabled 
the identification of a diverse set of trade-off solutions using the principles of Pareto dominance and crowding 
distance15. In each generation, individuals (i.e., candidate genotype × planting date combinations) were ranked 
based on non-dominated sorting, where a solution is considered superior if it is not outperformed across 
all objectives by any other solution15,17. Among solutions of the same Pareto rank, selection was guided by 
crowding distance, which estimates the density of neighboring solutions in objective space. Individuals with 
higher crowding distances were favored to maintain population diversity and avoid premature convergence to 
suboptimal regions13,23. The final solution displayed in Table  3 was selected from this Pareto-optimal set as 
it offered one of the most balanced compromises across all four traits. Its emergence as an elite solution can 
be attributed to its ability to remain non-dominated throughout the evolutionary process while maintaining 
a high crowding distance, which ensured its persistence through TournamentDCD-based selection. This dual 
mechanism, favoring solutions that are both non-dominated and well-distributed, allowed the optimization 
process to explore a wide solution space and converge toward an efficient frontier of agronomic performance. 
Therefore, the application of NSGA-II in this study was not only instrumental in identifying optimal input 
combinations but also provided biological interpretability by illustrating the inherent trade-offs between 
vegetative and reproductive growth parameters under varying temporal and genetic conditions17. While Table 3 
highlights the Qaleganj genotype as having optimal predicted trait values under the May planting scenario, it 
is important to note that the HA genotype also consistently exhibits strong performance across all key traits. 
Specifically, permutation importance analysis revealed that the Iranshahr and HA genotypes had higher relevance 
scores for growth period, boll number, and branch number, and its seed per plant value was comparable to 
Qaleganj. Moreover, Iranshahr showed the highest importance for the branch number, indicating its potential 
value in enhancing vegetative growth. However, the selection of Qaleganj was not based solely on individual trait 
performance or feature importance. Rather, it was the result of a multi-objective optimization process using the 
NSGA-II algorithm, which identifies genotypes that provide the best trade-offs among multiple traits. In this 
context, Qaleganj emerged as a Pareto-optimal solution offering a balanced combination of vegetative growth 
and reproductive potential when planted in May. This does not diminish the potential of genotype HA; in fact, 
our findings suggest that HA is another promising candidate with high trait performance. Future field validation 
may further confirm whether HA can match or outperform Qaleganj under varying environmental and planting 
conditions.

To the best of our knowledge, this is the first study to apply ML-NSGA-II for modeling and optimizing 
morphological traits of Roselle in response to various genotypes and planting dates. In conclusion, our study 
highlights the applicability and reliability of ML models, particularly RF, for analyzing complex genotype- 
environment interactions in Roselle cultivation.

While this study provides valuable insights into the prediction and optimization of agronomic traits using 
ML techniques, several limitations should be acknowledged. First, the experimental dataset was collected from a 
single geographical location. As a result, the models developed and optimized in this study may not generalize well 
to other environmental conditions or geographic regions with differing climatic and soil characteristics. Future 
studies should consider multi-location trials to capture broader environmental variability. Second, although 
the dataset included ten genotypes and five planting dates, the scope of genetic and temporal diversity remains 
limited. Consequently, extrapolating the results to other cultivars or planting schedules should be approached 
with caution. Validation with independent datasets from other seasons or genetic backgrounds is recommended 
to confirm the model’s robustness. Third, the study relied on limited categorical traits as input variables without 
incorporating additional physiological or environmental covariates that may influence yield-related responses. 
Factors such as soil moisture content, light intensity, nutrient availability, or hormonal levels were not measured 
and may have contributed to unexplained variability in plant performance. Including such variables in future 
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models could enhance prediction accuracy and biological interpretability. Addressing these limitations in future 
research will support the development of more robust and generalizable predictive frameworks for plant trait 
modeling and agricultural decision-making.

Conclusion
This study aimed to predict and understand how genotype and planting date affect the morphological traits of 
Roselle by leveraging advanced ML models, specifically RF and MLP, for the first time. The comparative analysis 
demonstrated that despite the relatively small difference in predictive performance, the RF model consistently 
outperformed MLP, confirming its robustness in capturing the complex genotype-by-environment interactions 
typical in agricultural systems. By integrating RF with the NSGA-II algorithm, we successfully identified the 
optimal combination of the Qaleganj genotype and the planting date of May 5 to maximize morphological traits. 
The RF-NSGA-II hybrid algorithm proved highly effective for multi-objective optimization, offering a powerful 
tool to identify ideal input combinations under varying conditions. These findings emphasize the potential of 
advanced ML-based approaches as robust alternatives to traditional statistical methods, offering new avenues 
for optimizing and improving morphological traits in Roselle and other crops in future studies. Future research 
can expand on these findings by incorporating additional environmental variables, exploring genomic selection 
approaches, and validating the models across multiple growing seasons and agroecological zones.

Data availability
The authors confirm that the datasets analyzed during the current study are available from the corresponding 
author on request.
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