Consider the (p,q) simple connected graph . The sum absolute values of the spectrum of quotient matrix of a graph make up the graph's quotient energy. The objective of this study is to examine the quotient energy of identity graphs and zero-divisor graphs of commutative rings using group theory, graph theory, and applications. In this study, the identity graphs derived from the group and a few classes of zero-divisor graphs of the commutative ring R are examined.
With simple and undirected connected graph Φ, the Schultz and modified Schultz polynomials are defined as and , respectively, where the summation is taken over all unordered pairs of distinct vertices in V(Φ), where V(Φ) is the vertex set of Φ, degu is the degree of vertex u and d(v,u) is the ordinary distance between v and u, u≠v. In this study, the Shultz distance, modified Schultz distance, the polynomial, index, and average for both have been generalized, and this generalization has been applied to some special graphs.
A graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense related. The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). A directed graph is a graph in which edges have orientation. A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex. For a simple undirected graph G with order n, and let denotes its complement. Let δ(G), ∆(G) denotes the minimum degree and maximum degree of G respectively. The complement degree polynomial of G is the polynomial CD[G,x]= , where C
... Show MoreThe aim of this paper is to introduce and study a new kind of graphs associated to an ideal of a commutative ring. Let ℛ be a commutative ring with identity, and I(ℛ) be the set of all non-trivial ideals of ℛ with S I(ℛ). The sum ideal graph associated to S, denoted by Ψ(ℛ, S), is the undirected graph with vertex set {A I(ℛ): S⊂A+B, for some B I(ℛ)} where two ideal vertices A and B are adjacent if and only if A B and S⊂A+B. In this paper we establish some of characterizations and results of this kind of graph with providing some examples.
Antimagic labeling of a graph with vertices and edges is assigned the labels for its edges by some integers from the set , such that no two edges received the same label, and the weights of vertices of a graph are pairwise distinct. Where the vertex-weights of a vertex under this labeling is the sum of labels of all edges incident to this vertex, in this paper, we deal with the problem of finding vertex antimagic edge labeling for some special families of graphs called strong face graphs. We prove that vertex antimagic, edge labeling for strong face ladder graph , strong face wheel graph , strong face fan graph , strong face prism graph and finally strong face friendship graph .
The metric dimension and dominating set are the concept of graph theory that can be developed in terms of the concept and its application in graph operations. One of some concepts in graph theory that combine these two concepts is resolving dominating number. In this paper, the definition of resolving dominating number is presented again as the term dominant metric dimension. The aims of this paper are to find the dominant metric dimension of some special graphs and corona product graphs of the connected graphs and , for some special graphs . The dominant metric dimension of is denoted by and the dominant metric dimension of corona product graph G and H is denoted by .
The topological indices are functions on the graph that do not depend on the labeling of their vertices. They are used by chemists for studying the properties of chemical compounds. Let be a simple connected graph. The Hyper-Zagreb index of the graph , is defined as ,where and are the degrees of vertex and , respectively. In this paper, we study the Hyper-Zagreb index and give upper and lower bounds for .
In this ˑwork, we present theˑ notion of the ˑgraph for a KU-semigroup as theˑundirected simple graphˑ with the vertices are the elementsˑ of and weˑˑstudy the ˑgraph ofˑ equivalence classesˑofˑ which is determinedˑ by theˑ definition equivalenceˑ relation ofˑ these verticesˑ, andˑ then some related ˑproperties areˑ given. Several examples are presented and some theorems are proved. Byˑ usingˑ the definitionˑ ofˑ isomorphicˑ graph, ˑwe showˑ thatˑ the graphˑ of equivalence ˑclasses ˑand the ˑgraphˑof ˑa KU-semigroup ˑ areˑ theˑ sameˑ, in special cases.
In this ˑwork, we present theˑ notion of the ˑgraph for a KU-semigroup as theˑundirected simple graphˑ with the vertices are the elementsˑ of and weˑˑstudy the ˑgraph ofˑ equivalence classesˑofˑ which is determinedˑ by theˑ definition equivalenceˑ relation ofˑ these verticesˑ, andˑ then some related ˑproperties areˑ given. Several examples are presented and some theorems are proved. Byˑ usingˑ the definitionˑ ofˑ isomorphicˑ graph, ˑwe showˑ thatˑ the graphˑ of equivalence ˑclasses ˑand the ˑgraphˑof ˑa KU-semigroup ˑ areˑ theˑ sameˑ,
... Show MoreThis work aims to introduce and to study a new kind of divisor graph which is called idempotent divisor graph, and it is denoted by . Two non-zero distinct vertices v1 and v2 are adjacent if and only if , for some non-unit idempotent element . We establish some fundamental properties of , as well as it’s connection with . We also study planarity of this graph.