In this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.
The primary aim of this paper, is to introduce the rough probability from topological view. We used the Gm-topological spaces which result from the digraph on the stochastic approximation spaces to upper and lower distribution functions, the upper and lower mathematical expectations, the upper and lower variances, the upper and lower standard deviation and the upper and lower r th moment. Different levels for those concepts are introduced, also we introduced some results based upon those concepts.
Background: Globally, hepatitis B is one of the most common infectious diseases. Estimates indicate that at least 2 billion people have been infected with the hepatitis B virus (HBV), with more than 378 million people being chronic carriers. Those individuals at higher risk for acquiring HBV and transmitting disease like pregnant women should be screened for hepatitis B surface antigen (HBsAg) to prevent transmission by vaccination and operation. Aim of study: The aim of this study was to determine the prevalence of HBsAg and its associated parameters in pregnant women who referred to antenatal clinic in Baghdad Province. Methods: The 234 apparently healthy pregnant women and their families, husbands and children were se
... Show Morestudied, and its important properties and relationship with both closed and open Nano sets were investigated. The new Nano sets were linked to the concept of Nano ideal, the development of nano ideal mildly closed set and it has been studied its properties. In addition to the applied aspect of the research, a sample was taken from patients infected with viral hepatitis, and by examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous disease.
The theory of Topological Space Fiber is a new and essential branch of mathematics, less than three decades old, which is created in forced topologies. It was a very useful tool and played a central role in the theory of symmetry. Furthermore, interdependence is one of the main things considered in topology fiber theory. In this regard, we present the concept of topological spaces α associated with them and study the most important results.
In this research, a new application has been developed for games by using the generalization of the separation axioms in topology, in particular regular, Sg-regular and SSg- regular spaces. The games under study consist of two players and the victory of the second player depends on the strategy and choice of the first player. Many regularity, Sg, SSg regularity theorems have been proven using this type of game, and many results and illustrative examples have been presented
The internal administrative spaces of the interior designer formed an obsession for their development and for finding solutions and treatments to advance to enhance the state of adaptation for their employees by providing a healthy, appropriate and sound environment for work and production. . The first chapter focuses on laying theoretical foundations to show what health materials are used in the administrative spaces of the training directorates of the Ministry of Education in Baghdad. The second chapter dealt with the knowledge of health materials, their impact and effectiveness in the interior space, and the variables of their functional characteristics and their work in the interior spaces in a way that enhances the development of
... Show MoreFibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.