In this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.
The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuz
... Show MoreThe main purpose of this paper is to introduce a some concepts in fibrewise bitopological spaces which are called fibrewise , fibrewise -closed, fibrewise −compact, fibrewise -perfect, fibrewise weakly -closed, fibrewise almost -perfect, fibrewise ∗-bitopological space respectively. In addition the concepts as - contact point, ij-adherent point, filter, filter base, ij-converges to a subset, ij-directed toward a set, -continuous, -closed functions, -rigid set, -continuous functions, weakly ijclosed, ij-H-set, almost ij-perfect, ∗-continuous, pairwise Urysohn space, locally ij-QHC bitopological space are introduced and the main concept in this paper is fibrewise -perfect bitopological spaces. Several theorems and characterizations c
... Show MoreAbstract. In this study, we shall research the fibrewise micro ideal topological spaces over Ḃ, as well as the relationship between fibrewise micro ideal topological spaces over Ḃ and fibrewise micro topological spaces over Ḃ. At first present introduces a novel notion from fibrewise micro ideal topological spaces over Ḃ, and differentiates it from fibrewise micro topological spaces over Ḃ. Some fundamental characteristics from these spaces are studied. Then show discussed the fibrewise micro ideal closed and micro ideal open topologies. Many propositions relating to these ideas are offered. In the next part will study defines and investigates novel conceptions from fibrewise micro ideal topological spaces over Ḃ, particularly f
... Show MoreIn this paper, a new type of supra closed sets is introduced which we called supra β*-closed sets in a supra topological space. A new set of separation axioms is defined, and its many properties are examined. The relationships between supra β*-Ti –spaces (i = 0, 1, 2) are studied and shown with instances. Additionally, new varieties of supra β*-continuous maps have been taken into consideration based on the supra β*-open sets theory.
Background: Globally, hepatitis B is one of the most common infectious diseases. Estimates indicate that at least 2 billion people have been infected with the hepatitis B virus (HBV), with more than 378 million people being chronic carriers. Those individuals at higher risk for acquiring HBV and transmitting disease like pregnant women should be screened for hepatitis B surface antigen (HBsAg) to prevent transmission by vaccination and operation. Aim of study: The aim of this study was to determine the prevalence of HBsAg and its associated parameters in pregnant women who referred to antenatal clinic in Baghdad Province. Methods: The 234 apparently healthy pregnant women and their families, husbands and children were se
... Show MoreIn this paper, the concept of soft closure spaces is defined and studied its basic properties. We show that the concept soft closure spaces are a generalization to the concept of
In this paper, certain types of regularity of topological spaces have been highlighted, which fall within the study of generalizations of separation axioms. One of the important axioms of separation is what is called regularity, and the spaces that have this property are not few, and the most important of these spaces are Euclidean spaces. Therefore, limiting this important concept to topology is within a narrow framework, which necessitates the use of generalized open sets to obtain more good characteristics and preserve the properties achieved in general topology. Perhaps the reader will realize through the research that our generalization preserved most of the characteristics, the most important of which is the hereditary property. Two t
... Show More