Numerous integral and local electron density’s topological parameters of significant metal-metal and metal-ligand bonding interactions in a trinuclear tetrahydrido cluster [(Cp* Ir) (Cp Ru)2 (μ3-H) (μ-H)3]1 (Cp = η5 -C5Me5), (Cp* = η5 -C5Me4Et) were calculated and interpreted by using the quantum theory of atoms in molecules (QTAIM). The properties of bond critical points such as the delocalization indices δ (A, B), the electron density ρ(r), the local kinetic energy density G(r), the Laplacian of the electron density ∇2ρ(r), the local energy density H(r), the local potential energy density V(r) and ellipticity ε(r) are compared with data from earlier organometallic system studies. A comparison of the topological processes of different atom-atom interactions has become possible thanks to these results. In the core of the heterometallic tetrahydrido cluster, the Ru2IrH4 part, the calculations showed that there are no bond critical points (BCPs) or identical bond paths (BPs) between Ru-Ru and Ru-Ir. The distribution of electron densities is determined by the position of bridging hydride atoms coordinated to Ru-Ru and Ru-Ir, which significantly affects the bonds between these transition metal atoms. On the other hand, the results confirm that the cluster under study contains a 7c–11e bonding interaction delocalized over M3H4, as shown by the non-negligible delocalization index calculations. The small values for ρ(b) above zero, together with the small values, again above zero, for Laplacian ∇2ρ(b) and the small positive values for total energy density H(b), are shown by the Ru-H and Ir-H bonds in this cluster is typical for open-shell interactions. Also, the topological data for the bond interactions between Ir and Ru metal atoms with the C atoms of the cyclopentadienyl Cp ring ligands are similar. They show properties very identical to open-shell interactions in the QTAIM classification.
Efficient management of treated sewage effluents protects the environment and reuse of municipal, industrial, agricultural and recreational as compensation for water shortages as a second source of water. This study was conducted to investigate the overall performance and evaluate the effluent quality from Al- Rustamiya sewage treatment plant (STP), Baghdad, Iraq by determining the effluent quality index (EQI). This assessment included daily records of major influent and effluent sewage parameters that were obtained from the municipal sewage plant laboratory recorded from January 2011 to December 2018. The result showed that the treated sewage effluent quality from STP was within the Iraqi quality standards (IQS) for disposal and t
... Show MoreThe experimental proton resonance data for the reaction P+48Ti have been used to calculate and evaluate the level density by employed the Gaussian Orthogonal Ensemble, GOE version of RMT, Constant Temperature, CT and Back Shifted Fermi Gas, BSFG models at certain spin-parity and at different proton energies. The results of GOE model are found in agreement with other, while the level density calculated using the BSFG Model showed less values with spin dependence more than parity, due the limitation in the parameters (level density parameter, a, Energy shift parameter, E1and spin cut off parameter, σc). Also, in the CT Model the level density results depend mainly on two parameters (T and ground state back shift energy, E0), which are app
... Show MoreA confluence of forces has brought journalism and journalism education to a precipice. The rise of fascism, the advance of digital technology, and the erosion of the economic foundation of news media are disrupting journalism and mass communication (JMC) around the world. Combined with the increasingly globalized nature of journalism and media, these forces are posing extraordinary challenges to and opportunities for journalism and media education. This essay outlines 10 core principles to guide and reinvigorate international JMC education. We offer a concluding principle for JMC education as a foundation for the general education of college students.
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
This paper is concerned with introducing and studying the o-space by using out degree system (resp. i-space by using in degree system) which are the core concept in this paper. In addition, the m-lower approximations, the m-upper approximations and ospace and i-space. Furthermore, we introduce near supraopen (near supraclosed) d. g.'s. Finally, the supra-lower approximation, supraupper approximation, supra-accuracy are defined and some of its properties are investigated.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreThroughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
Abstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.