The current study uses the flame fragment deposition (FFD) method to synthesize carbon nanotubes (CNTs) from Iraqi liquefied petroleum gas (LPG), which is used as a carbon source. To carry out the synthesis steps, a homemade reactor was used. To eliminate amorphous impurities, the CNTs were sonicated in a 30 percent hydrogen peroxide (H2O2) solution at ambient temperature. To remove the polycyclic aromatic hydrocarbons (PAHs) generated during LPG combustion, sonication in an acetone bath is used. The produced products were investigated and compared with standard Multi-walled carbon nanotube MWCNTs (95%), Sigma, Aldrich, using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), Raman spectroscopy, scanning electron spectroscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). Under the applied experimental circumstances, the obtained characterization data confirm the synthesis of multi-wall carbon nanotubes (MWCNTs) with portion from few wall carbon nanotubes (FWCNTs). The average diameter of synthesized Carbon nanotubes ranged from 31.26 to 78.00 nm, with a purity of more than 65 percent.
Ni-Co-Mn-Mg ferrite nanoparticles with the formula (Ni,Co)xMn0.25-xMg0.75Fe2O4 were synthesized in this work by employing the sol-gel auto-combustion process, with nitrates used as the cations source and citric acid (C6H8O7) as the combustion agent. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and a vibrating sample magnetometer (VSM) were used to characterize the structural, morphological, and magnetic properties of ferrite powders. The XRD measurements showed crystallite sizes ranging between 24 - 28 nm. The FE-SEM images show the presence of agglomeration as well as a non-homogeneous distribution of the samples. On the other hand, the stoichiometry of the react
... Show MoreNew heterocyclic derivatives of quinoline are reported. Reaction of quinoline-2-thiol 4 with hydrazine hydrate gave 2-hydrazionoquinoline 5. Treatment of 5 with CS2 in pyridine afforded 1,2,4-triazolo-[4,3-a]- quinolin-1-2H-thione 6, whereas the reaction of 5 with carboxylic acids namely formic acid or acetic acid, yielded the 1,2,4-triazol-[4,3-a]-quinolin 7 or 5-methyl-1,2,4-triazolo [4,3-a]-quinoline 8 through ring closure. Diazotization of 5 under acidic conditions produced the fused tetrazole compound 9, tetrzolo-[1,5-a]- quinoline. Moreover, treatment of 5 with active methlyene compounds gave two pyrazole derivatives 10 and 11. Azomethines 12a-e were prepared through condensation of 5 with aromatic aldehydes or ketones.
This research includes the synthesis, characterization, and investigation of liquid crystalline properties of new rod-shaped liquid crystal compounds 1,4- phenylene bis(2-(5-(four-alkoxybenzylidene)-2,4-dioxothiazolidin-3- yl)acetate), prepared thiazolidine-2,4-dione (I) by the thiourea reaction with chloroacetic acid and water in the presence of the concentrated hydrochloric acid. The n-alkoxy benzaldehyde (II)n synthesized from the reacted 4- hydreoxybenzaldehyde and n-alkyl bromide with potassium hydroxide, and then the compound (I) was reacted with (II)n in the presence of piperidine to produce compounds (III)n. Also, hydroquinone was converted into a corresponding compound (IV) by refluxing with two moles of chloracetyl chloride in pyr
... Show MorePhthalimide formation of Phthalic anhydride with various amines using microwave or without a method with the difference of the catalyst used in a prepared Phthalimide, either structure general are C6H4CONRCO and used as starting materials in synthesis several compounds derivative phthalimides are an important compounds because spectrum wide biological activities including Antimicrobial activity, anticonvulsant activity, Anti-inflammatory activity,Analgesic activity, Anti- influenza activity and Thromboxane inhibitory activity
2(2-Tetrahydropyranylthio) methyl cyclopropyl amines were synthesized from allylmercaptan through several steps. The structures of the intermediates and the final products where confirmed through IR, NMR and elemental analysis, these compounds may be of value in the treatment of diseases where free radicals are implicated in their pathogensis, since the thio and the amino groups of the synthesized compounds may act as free radical scavengers.
The compound [G1] was prepared from the reaction of thiosemicarbazide with para-hydroxyphenylmethyl ketone in ethanol as a solvent. Then by sequence reactions prepared [G2] and [G3] compounds. The compound [G4] reaction with ethyl acetoacetoneto synthesized compound [G6] and acetyl acetone to synthesized compound [G5]. Reaction the [G3] with two different types of aldehydes in the present of pipredine to form new alkenes compounds [G7]and [G8].The compound [G3] reacted with hydrazine hydrate to formation[G4] with present the hydrazine hydrade 80% in (10) ml of absolute ethanol. Latter the compound [G4]reacted with different aldehydes with present the glacial acetic acid and the solvent was ethanol to formed the Schiff bases compounds[G9] an
... Show MoreStarting from 4, - Dimercaptobiphenyl, a variety of phenolic Schiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis all analysis were performed in center of consultation in Jordan Universty.
Five new ceftazidime derivatives were designed and synthesized in an attempt to improve the acid stability and may increase the spectrum of ceftazidime. The synthesized compounds included; Schiff base of ceftazidime (compound 1), ceftazidime lysine amide Schiff base (compound 2), ceftazidime lysine amide (compound 3), ceftazidime-di-lysine amide Schiff base (compound 4) and ceftazidime-di-lysine amide (compound 5). New ceftazidime derivatives were successfully prepared characterized and identified using spectral and elemental microanalysis (CHNS) analyses and the results comply with the calculated measurements.
Compounds 1 and 2 were subjected to a stability study in phosphate buffer (0.2M, pH 7.4) and in KCl/HCl buffer (0.
... Show MoreThe natural polyphenolic compound that cinnamon contains is well known for its various biological activities, a broad variety of pharmacological and therapeutic properties. Diversified biomedical and pharmacological applications benefit from organic nanoparticles with controlled properties. Bioactive and non-toxic, cinnamon nanoparticles (CNPs) can be effective antibacterial agents. Driven by this idea, we prepared spherical CNPs using liquid (PLAL) pulse laser ablation technique and defined those NPs. Using Q-switched Nd : YAG With a wavelength of 1064 nm pulse laser of constant energy 500 mj , And different laser pulses ( 250 , 500 , 750 , 1000 ) pulse /sec a pure cinnamon target submerged in
... Show More