In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained for each subpopulation as a vector distribution. The numerical outputs are tabulated, graphed, and compared with previous statistical estimations for 2013, 2015, and 2030, respectively. The solutions of FD and MMCFD are found to be in good agreement with small standard deviation of the means, and small measure of difference. The new MMCFD method is useful to predict intervals of random distributions for the numerical solutions of this epidemiology model with better approximation and agreement between existing statistical estimations and FD numerical solutions.
A Monte Carlo simulation has been used to design program which simulate gamma rays backscattering system. Gamma ray backscattering is very important to get useful information about shielding, absorption and counting problems. Simulation was done of a 661.6 KeV from a collimated point source of 137Cs. When increasing the scattering angle of photon which emerging from Iron target , as the incident gamma beam angles of 15°, 45° and 75°, the results showed that the single scattering count decreases. Whereas, this count increased by increasing the incident angle. In addition, the single scattering peak (count) increases according to the sample thickness until „saturation thickness‟. Our simulation results are useful to evaluate the opt
... Show MoreThis research presents results on the full energy peak efficiency of a high purity germanium (HPGe) detector from point source as a function of photon energy and source-detector distance. The directions of photons emitted from the source and the photon path lengths in the detector were determined by Monte Carlo technique. A major advantage of this technique is the short computation time compared to the experiments. Another advantage is the flexibility for inputting detector-related parameters (such as source–detector distance, detector radius, length and attenuation coefficient) into the algorithm developed, thus making it an easy and flexible method to apply to other detector systems and configurations. It has been designed and writte
... Show MoreIn this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this
... Show MoreIn this paper, the finite difference method is used to solve fractional hyperbolic partial differential equations, by modifying the associated explicit and implicit difference methods used to solve fractional partial differential equation. A comparison with the exact solution is presented and the results are given in tabulated form in order to give a good comparison with the exact solution
In this research, the covariance estimates were used to estimate the population mean in the stratified random sampling and combined regression estimates. were compared by employing the robust variance-covariance matrices estimates with combined regression estimates by employing the traditional variance-covariance matrices estimates when estimating the regression parameter, through the two efficiency criteria (RE) and mean squared error (MSE). We found that robust estimates significantly improved the quality of combined regression estimates by reducing the effect of outliers using robust covariance and covariance matrices estimates (MCD, MVE) when estimating the regression parameter. In addition, the results of the simulation study proved
... Show MoreThe temperature distributions are to be evaluated for the furnace of Al-Mussaib power plant. Monte Carlo simulation procedure is used to evaluate the radiation heat transfer inside the furnace, where the radiative transfer is the most important process occurring there. Weighted sum of gray-gases model is used to evaluate the radiative properties of the non gray gas in the enclosure. The energy balance equations are applied for each gas, and surface zones, and by solving these equations, both the temperature, and the heat flux are found.
Good degree of accuracy has been obtained, when comparing the results obtained by the simulation with the data of the designing company, and the data obtained by the zonal method. In
... Show MoreIn this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.
The goal of this research is to develop a numerical model that can be used to simulate the sedimentation process under two scenarios: first, the flocculation unit is on duty, and second, the flocculation unit is out of commission. The general equation of flow and sediment transport were solved using the finite difference method, then coded using Matlab software. The result of this study was: the difference in removal efficiency between the coded model and operational model for each particle size dataset was very close, with a difference value of +3.01%, indicating that the model can be used to predict the removal efficiency of a rectangular sedimentation basin. The study also revealed
The primary focus of the study factor reverse polymerization styrene polymer kinetics and distribution weight Aljaia in Blma Aldhur free reverse The study was conducted wi Mamahakah and using the Monte Carlo method