Preferred Language
Articles
/
bsj-6213
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network
...Show More Authors

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to evaluate the pronunciation of the Arabic alphabet. Voice data from six school children are recorded and used to test the performance of the proposed method. The padding technique has been used to augment the voice data before feeding the data to the CNN structure to developed the classification model. In addition, three other feature extraction techniques have been introduced to enable the comparison of the proposed method which employs padding technique. The performance of the proposed method with padding technique is at par with the spectrogram but better than mel-spectrogram and mel-frequency cepstral coefficients. Results also show that the proposed method was able to distinguish the Arabic alphabets that are difficult to pronounce. The proposed method with padding technique may be extended to address other voice pronunciation ability other than the Arabic alphabets.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 10 2023
Journal Name
Biomass Conversion And Biorefinery
Lactic acid-based deep eutectic solvents and activated carbon for soap removal from crude biodiesel
...Show More Authors

View Publication
Scopus (9)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Jan 10 2015
Journal Name
British Journal Of Mathematics & Computer Science
The Use of Gradient Based Features for Woven Fabric Images Classification
...Show More Authors

View Publication
Crossref
Publication Date
Wed Apr 01 2015
Journal Name
2015 Annual Ieee Systems Conference (syscon) Proceedings
Automatic generation of fuzzy classification rules using granulation-based adaptive clustering
...Show More Authors

View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between Bayesian Method and Full Maximum Likelihood to estimate Poisson regression model hierarchy and its application to the maternal deaths in Baghdad
...Show More Authors

Abstract:

 This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.

The comparison was done by  simulation  using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the  Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood  with sample size  (n = 30) is the best to represent the maternal mortality data after it has been reliance value param

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Al-nahrain University Science
Breaking Knapsack Cipher Using Population Based Incremental Learning
...Show More Authors

View Publication
Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Complexity
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay

... Show More
View Publication
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Tue Jan 30 2024
Journal Name
International Journal Of Engineering Pedagogy (ijep)
The Impact of Two Proposed Strategies Based on Active Learning on Students' Achievement at the Computer and Their Social Intelligence
...Show More Authors

Active learning is a teaching method that involves students actively participating in activities, exercises, and projects within a rich and diverse educational environment. The teacher plays a role in encouraging students to take responsibility for their own education under their scientific and pedagogical supervision and motivates them to achieve ambitious educational goals that focus on developing an integrated personality for today’s students and tomorrow’s leaders. It is important to understand the impact of two proposed strategies based on active learning on the academic performance of first-class intermediate students in computer subjects and their social intelligence. The research sample was intentionally selected, consis

... Show More
View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Micro-Bubble Flotation for Removing Cadmium Ions from Aqueous Solution: Artificial Neural Network Modeling and Kinetic of Flotation
...Show More Authors

In this work, microbubble dispersed air flotation technique was applied for cadmium ions removal from wastewater aqueous solution. Experiments parameters such as pH (3, 4, 5, and 6), initial Cd(II) ions concentration (40, 80, and 120 mg/l)  contact time( 2, 5, 10 , 15, and 20min), and surfactant (10, 20and 40mg/l) were studied in order to optimize the best conditions .The experimental results indicate that microbubbles were quite effective in removing cadmium ions and the anionic surfactant SDS was found to be more efficient than cationic CTAB in flotation process. 92.3% maximum removal efficiency achieved through 15min at pH 5, SDS surfactant concentration 20mg/l, flow rate250 cm3/min and at 40mg/l Cd(II) ions initial co

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Study the Effect of Different Reinforcements on the Damping Properties of the Polymer Matrix Composite
...Show More Authors

In this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness and Material Removal Rate in Electrochemical Machining Using Taguchi Method
...Show More Authors

Electrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel.  Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Sig

... Show More
View Publication Preview PDF
Crossref (5)
Crossref