Preferred Language
Articles
/
bsj-6213
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network
...Show More Authors

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to evaluate the pronunciation of the Arabic alphabet. Voice data from six school children are recorded and used to test the performance of the proposed method. The padding technique has been used to augment the voice data before feeding the data to the CNN structure to developed the classification model. In addition, three other feature extraction techniques have been introduced to enable the comparison of the proposed method which employs padding technique. The performance of the proposed method with padding technique is at par with the spectrogram but better than mel-spectrogram and mel-frequency cepstral coefficients. Results also show that the proposed method was able to distinguish the Arabic alphabets that are difficult to pronounce. The proposed method with padding technique may be extended to address other voice pronunciation ability other than the Arabic alphabets.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Dec 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Boltzmann Machine Neural Network for Arabic Speech Recognition
...Show More Authors

Boltzmann mach ine neural network bas been used to recognize the Arabic speech.  Fast Fourier transl(>lmation algorithm has been used t() extract speciral 'features from an a caustic signal .

The  spectral  feature size is reduced by series of operations in

order to make it salable as input for a neural network which is used as a recogni zer by Boltzmann Machine Neural  network which has been used as a recognizer for phonemes . A training set consist of a number of Arabic phoneme repesentations, is used to train lhe neuntl network.

The neural network recognized Arabic. After Boltzmann Machine Neura l    network   training  the  system   with 

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
International Journal On “technical And Physical Problems Of Engineering”
Age Estimation Utilizing Deep Learning Convolutional Neural Network
...Show More Authors

Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes

... Show More
Scopus (8)
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
A Survey on Arabic Text Classification Using Deep and Machine Learning Algorithms
...Show More Authors

    Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th

... Show More
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Compared with Genetic Algorithm Fast – MCD – Nested Extension and Neural Network Multilayer Back propagation
...Show More Authors

The study using Nonparametric methods for roubust to estimate a location and scatter it is depending  minimum covariance determinant of multivariate regression model , due to the presence of outliear values and increase the sample size and presence of more than after the model regression multivariate therefore be difficult to find a median location .       

It has been the use of genetic algorithm Fast – MCD – Nested Extension and compared with neural Network Back Propagation of multilayer in terms of accuracy of the results and speed in finding median location ,while the best sample to be determined by relying on less distance (Mahalanobis distance)has the stu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Survey For Arabic Part of Speech Tagging based on Machine Learning
...Show More Authors

      The Arabic Language is the native tongue of more than 400 million people around the world,  it is also a language that carries an important religious and international weight.  The Arabic language has taken its share of the huge technological explosion that has swept the world, and therefore it needs to be addressed with natural language processing applications and tasks.

This paper aims to survey and gather the most recent research related to Arabic Part of Speech (APoS), pointing to tagger methods used for the Arabic language, which ought to aim to constructing corpus for Arabic tongue. Many AI investigators and researchers have worked and performed POS utilizing various machine-learning methods, such as Hidden-Mark

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jan 09 2023
Journal Name
2023 15th International Conference On Developments In Esystems Engineering (dese)
Deep Learning-Based Speech Enhancement Algorithm Using Charlier Transform
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF