The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators . Furthermore, the concept of a fuzzy compact linear operator in a standard fuzzy normed space is introduced. Also, several fundamental theorems of fuzzy compact linear operators are studied in the same space. More accurately, every fuzzy compact linear operator is proved to be fuzzy bounded where and are two standard fuzzy normed spaces
In this paper, we define the bg**-connected space and study the relation between this space and other kinds of connected spaces .Also we study some types of continuous functions and study the relation among (connected space, b-connected space, bg-connected space and bg**-connected space) under these types of continuous functions.
Can not reach a comprehensive concept for interior design through the use of Harmonization term according transformations experienced by the terms of the variables associated with the backlog of cultures that characterize concepts according to the nature of the users of the spaces in the design output, which necessitates the meaning of the combination of knowledge, art, science, such as the type of perceptions design the Harmonization cognitive science with art to create products of the use of design configurations that help the designer to put such a product within the reality and like the fact that reliable, as well as the rational knowledge tend somehow to the objective specifically in facilitating the substance subject to perceptible
... Show MoreR. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
Based on the needs of the scientific community, researchers tended to find new iterative schemes or develop previous iterative schemes that would help researchers reach the fixed point with fewer steps and with stability, will be define in this paper the multi_implicit four-step iterative (MIFSI) which is development to four-step implicit fixed point iterative, to develop the aforementioned iterative scheme, we will use a finite set of projective functions ,nonexpansive function and finite set from a new functions called generalized quasi like contractive which is an amalgamation of quasi contractive function and contractive like function , by the last function and a set of sequential organized steps, we will be able to prove the existen
... Show MoreIn this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise Lindelöf and locally Lindelöf topological spaces, which are generalizations of will-known concepts: Lindelöf topological space (1) "A topological space X is called a Lindelöf space if for every open cover of X has a countable subcover" and locally Lindelöf topological space (1) "A topological space X is called a locally Lindelöf space if for every point x in X, there exist a nbd U of x such that the closure of U in X is Lindelöf space". Either the new concepts are: "A fibrewise topological space X over B is called a fibrewise Lindelöf if the projection function p : X→B is Lindelöf" and "The fibrewise topological space X over B
... Show Morethis research concern with material function subject by using it in Baghdad education in formational places , because it considered as one of the most important spaces which needs a material presentation for the interior consistings that shares with prepairing the right mode for thos who use these spaces, regarding to that this research includes four chapters: Chapter one: concern with the research problem represented by the following question: can we use the material to place the hole spaces of information place ? So the aim of the research seems very obvious in functioning the material these places, and to take a close view on the importance of the research the theory , implementation and objective limits also concerning the terminolog
... Show MoreWe introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
This paper discusses the limitation of both Sequence Covering Array (SCA) and Covering Array (CA) for testing reactive system when the order of parameter-values is sensitive. In doing so, this paper proposes a new model to take the sequence values into consideration. Accordingly, by superimposing the CA onto SCA yields another type of combinatorial test suite termed Multi-Valued Sequence Covering Array (MVSCA) in a more generalized form. This superimposing is a challenging process due to NP-Hardness for both SCA and CA. Motivated by such a challenge, this paper presents the MVSCA with a working illustrative example to show the similarities and differences among combinatorial testing methods. Consequently, the MVSCA is a
... Show More