Preferred Language
Articles
/
bsj-3823
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The second level is features extraction which extracts features from the infected area based on hybrid features: grey level run length matrix and 1st order histogram based features. The attributes that extracted from second level are utilized in third level using FFNN to perform the classification process. The proposed framework is applied to database with different backgrounds, totally 120 color potato images, (80) samples used in training the network and the rest samples (40) used for testing. The proposed PDCNN framework is very effective in classifying four types of potato tubers diseases with 91.3% of efficiency.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Intelligent Automation & Soft Computing
A Novel Classification Method with Cubic Spline Interpolation
...Show More Authors

View Publication
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Brain Tumor Detection Method Using Unsupervised Classification Technique
...Show More Authors

Magnetic  Resonance  Imaging  (MRI)  is  one  of  the  most important diagnostic tool. There are many methods to segment the

tumor of human brain. One of these, the conventional method that uses pure image processing techniques that are not preferred because they need human interaction for accurate segmentation. But unsupervised methods do not require any human interference and can segment   the   brain   with   high   precision.   In   this   project,   the unsupervised  classification methods have been used in order to detect the tumor  disease from MRI images.    These metho

... Show More
View Publication Preview PDF
Publication Date
Mon May 31 2021
Journal Name
Indian Journal Of Ecology
Identification and Antimicrobial Susceptibility Profiles of Salmonella spp. Isolated from Chicken Flocks and their Feed and Water in Karbala, Iraq
...Show More Authors

The objective of study was determining the most prevalent Salmonella spp. and their antimicrobial susceptibility in broilers and laying chickens and their feed and drinking water in five chicken farms in Karbala, Iraq over the period from August to October 2020. A total of 289 samples, including 217 cloaca swabs, 46 water and 26 feed samples were collected. Salmonella spp. was identified firstly by routine diagnostic methods, followed by applying the API 20E kit, the Vitek2 system, and serology. There was significant differences in Salmonella prevalence among different types of samples, mainly cloaca swabs reported a high isolation rate (21.7%). In contrast, feed samples were completely free of contamination. The highest rate of isolation w

... Show More
Preview PDF
Publication Date
Wed Feb 20 2019
Journal Name
Political Sciences Journal
International relations between balance of power and balance of threat (theoretical framework)
...Show More Authors

The international order have been changed during the modern and contemporary history, and however those changing in international order doesn't go to beyond several concepts such as " balance of power";" conflict"; "power" and " threaten", which all those are depending on the fundamentals or basic terms which was called " power" or" hard power". In this time, we can say that the political relations among the effective units could be analyzed according to the concept of " balance of threaten" instead of the classic concept which had called " balance of power" that the scholars used to describe the international relations . In conclusion , the concept of " balance of threaten" has a significant importance in the studies of the internationa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 08 2021
Journal Name
Scientific Reports
Weakly Supervised Sensitive Heatmap framework to classify and localize diabetic retinopathy lesions
...Show More Authors
Abstract<p>Vision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are app</p> ... Show More
View Publication
Scopus (7)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Oct 17 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha

... Show More
Preview PDF
Publication Date
Tue Jun 22 2021
Journal Name
Expert Systems
Hybrid intelligent technology for plant health using the fusion of evolutionary optimization and deep neural networks
...Show More Authors

Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 21 2025
Journal Name
Euphrates Journal Of Agricultural Science
PHYSIOLOGICAL INFLUENCEOFNITROGENFERTILIZERS RESOURCESANDANTI-TRANSPIRATININ SOME QUALITY ATTRIBUTES AND THE CONCENTRATION OF NITRATES IN POTATO TUBERS
...Show More Authors

View Publication
Publication Date
Wed Dec 25 2019
Journal Name
Journal Of Engineering
Link Failure Recovery for a Large-Scale Video Surveillance System using a Software-Defined Network
...Show More Authors

The software-defined network (SDN) is a new technology that separates the control plane from data plane for the network devices. One of the most significant issues in the video surveillance system is the link failure. When the path failure occurs, the monitoring center cannot receive the video from the cameras. In this paper, two methods are proposed to solve this problem.  The first method uses the Dijkstra algorithm to re-find the path at the source node switch. The second method uses the Dijkstra algorithm to re-find the path at the ingress node switch (or failed link).

... Show More
View Publication Preview PDF
Crossref (1)
Crossref