The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The second level is features extraction which extracts features from the infected area based on hybrid features: grey level run length matrix and 1st order histogram based features. The attributes that extracted from second level are utilized in third level using FFNN to perform the classification process. The proposed framework is applied to database with different backgrounds, totally 120 color potato images, (80) samples used in training the network and the rest samples (40) used for testing. The proposed PDCNN framework is very effective in classifying four types of potato tubers diseases with 91.3% of efficiency.
In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of B
... Show MoreThe current research aims to prepare a proposed Programmebased sensory integration theory for remediating some developmental learning disabilities among children, researchers prepared a Programme based on sensory integration through reviewing studies related to the research topic that can be practicedby some active teaching strategies (cooperative learning, peer learning, Role-playing, and educational stories). The Finalformat consists of(39) training sessions.
In this work, a fiber-optic biomedical sensor was manufactured to detect hemoglobin percentages in the blood. SPR-based coreless optical fibers were developed and implemented using single and multiple optical fibers. It was also used to calculate refractive indices and concentrations of hemoglobin in blood samples. An optical fiber, with a thickness of 40 nanometers, was deposited on gold metal for the sensing area to increase the sensitivity of the sensor. The optical fiber used in this work has a diameter of 125μm, no core, and is made up of a pure silica glass rod and an acrylate coating. The length of the fiber was 4cm removed buffer and the splicing process was done. It is found in practice that when the sensitive refractive i
... Show MoreA geographic information system (GIS) is a very effective management and analysis tool. Geographic locations rely on data. The use of artificial neural networks (ANNs) for the interpretation of natural resource data has been shown to be beneficial. Back-propagation neural networks are one of the most widespread and prevalent designs. The combination of geographic information systems with artificial neural networks provides a method for decreasing the cost of landscape change studies by shortening the time required to evaluate data. Numerous designs and kinds of ANNs have been created; the majority of them are PC-based service domains. Using the ArcGIS Network Analyst add-on, you can locate service regions around any network
... Show MoreFuture generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for
... Show MoreUpper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin
... Show MoreRecently, there has been an increasing advancement in the communications technology, and due to the increment in using the cellphone applications in the diverse aspects of life, it became possible to automate home appliances, which is the desired goal from residences worldwide, since that provides lots of comfort by knowing that their appliances are working in their highest effi ciency whenever it is required without their knowledge, and it also allows them to control the devices when they are away from home, including turning them on or off whenever required. The design and implementation of this system is carried out by using the Global System of Mobile communications (GSM) technique to control the home appliances – In this work, an ele
... Show MoreFire incidences are classed as catastrophic events, which mean that persons may experience mental distress and trauma. The development of a robotic vehicle specifically designed for fire extinguishing purposes has significant implications, as it not only addresses the issue of fire but also aims to safeguard human lives and minimize the extent of damage caused by indoor fire occurrences. The primary goal of the AFRC is to undergo a metamorphosis, allowing it to operate autonomously as a specialized support vehicle designed exclusively for the task of identifying and extinguishing fires. Researchers have undertaken the tasks of constructing an autonomous vehicle with robotic capabilities, devising a universal algorithm to be employed
... Show MoreThis paper presents an enhancement technique for tracking and regulating the blood glucose level for diabetic patients using an intelligent auto-tuning Proportional-Integral-Derivative PID controller. The proposed controller aims to generate the best insulin control action responsible for regulating the blood glucose level precisely, accurately, and quickly. The tuning control algorithm used the Dolphin Echolocation Optimization (DEO) algorithm for obtaining the near-optimal PID controller parameters with a proposed time domain specification performance index. The MATLAB simulation results for three different patients showed that the effectiveness and the robustness of the proposed control algorithm in terms of fast gene
... Show More