Preferred Language
Articles
/
bsj-3823
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The second level is features extraction which extracts features from the infected area based on hybrid features: grey level run length matrix and 1st order histogram based features. The attributes that extracted from second level are utilized in third level using FFNN to perform the classification process. The proposed framework is applied to database with different backgrounds, totally 120 color potato images, (80) samples used in training the network and the rest samples (40) used for testing. The proposed PDCNN framework is very effective in classifying four types of potato tubers diseases with 91.3% of efficiency.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Multispectral and Panchromatic used Enhancement Resolution and Study Effective Enhancement on Supervised and Unsupervised Classification Land – Cover
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Aug 17 2022
Journal Name
Aip Conference Proceedings
The effect of using Gaussian, Kurtosis and LogCosh as kernels in ICA on the satellite classification accuracy
...Show More Authors

This study focusses on the effect of using ICA transform on the classification accuracy of satellite images using the maximum likelihood classifier. The study area represents an agricultural area north of the capital Baghdad - Iraq, as it was captured by the Landsat 8 satellite on 12 January 2021, where the bands of the OLI sensor were used. A field visit was made to a variety of classes that represent the landcover of the study area and the geographical location of these classes was recorded. Gaussian, Kurtosis, and LogCosh kernels were used to perform the ICA transform of the OLI Landsat 8 image. Different training sets were made for each of the ICA and Landsat 8 images separately that used in the classification phase, and used to calcula

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Dec 03 2022
Journal Name
Tikrit Journal Of Pure Science
A Pixel Based Method for Image Compression
...Show More Authors

The basic solution to overcome difficult issues related to huge size of digital images is to recruited image compression techniques to reduce images size for efficient storage and fast transmission. In this paper, a new scheme of pixel base technique is proposed for grayscale image compression that implicitly utilize hybrid techniques of spatial modelling base technique of minimum residual along with transformed technique of Discrete Wavelet Transform (DWT) that also impels mixed between lossless and lossy techniques to ensure highly performance in terms of compression ratio and quality. The proposed technique has been applied on a set of standard test images and the results obtained are significantly encourage compared with Joint P

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Theoretical And Applied Information Technology
Graph based text representation for document clustering
...Show More Authors

Advances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship an

... Show More
Preview PDF
Scopus (15)
Scopus
Publication Date
Thu Oct 21 2021
Journal Name
The 3rd Al-noor International Conference Of Science And Technology 2021 Muscat-oman
Gama Platform Survey for Agent-Based Modelling
...Show More Authors

The agent-based modeling is currently utilized extensively to analyze complex systems. It supported such growth, because it was able to convey distinct levels of interaction in a complex detailed environment. Meanwhile, agent-based models incline to be progressively complex. Thus, powerful modeling and simulation techniques are needed to address this rise in complexity. In recent years, a number of platforms for developing agent-based models have been developed. Actually, in most of the agents, often discrete representation of the environment, and one level of interaction are presented, where two or three are regarded hardly in various agent-based models. The key issue is that modellers work in these areas is not assisted by simulation plat

... Show More
View Publication
Publication Date
Sat Apr 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Response of Growth and Yield of True Potato Seed Plants to Foliar Application with Organic Nutrients
...Show More Authors
Abstract<p>The experiment was carried out in the spring season of 2017 in the open fields of the College of Agricultural Engineering Sciences/University of Baghdad/Al-Jadriya camps in order to improve the growth and yield of potato plants resulting from the cultivation of true potato seeds of the hybrid BSS-295 by spraying with two organic nutrients. The experiment included two factors: First one was spraying with Megafol nutrient at concentrations 0, 1, 2 and 4 ml l<sup>-1</sup> and the second was spraying with Algazone nutrient at concentrations 0, 1.5 and 3 ml l<sup>-1</sup>, the experiment was applied according to the complete randomized block design with three replicatio</p> ... Show More
View Publication
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Thu Feb 13 2025
Journal Name
Technology In Agronomy
Challenges and innovations in potato harvester design: the role of artificial intelligence in improving crop sorting
...Show More Authors

As population growth increases the demand for crops increases and their quality improves, and it becomes necessary to find innovative and modern solutions to enhance production. In this context, artificial intelligence plays a pivotal role in developing new technologies to improve crop sorting and increase agricultural yields. The present review discusses the main differences between manual and mechanical potato harvesting, explaining the advantages and disadvantages of each method. Manual harvesting is highlighted as a traditional method that allows for greater precision in handling the crop, but it requires more time and effort. In contrast, mechanical harvesting provides greater efficiency and speed in the process, but it may damage some

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Annals Of Agricultural Sciences
Water use efficiency of potato (Solanum tuberosum L.) under different irrigation methods and potassium fertilizer rates
...Show More Authors

View Publication
Scopus (61)
Crossref (55)
Scopus Crossref
Publication Date
Sun Jun 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Performance of Subsurface Flow Constructed Wetland Systems in the Treatment of Al-Rustumia Municipal Wastewater using Continuous Loading Feed
...Show More Authors

This study aimed at comparing the performance of vertical, horizontal and hybrid subsurface flow systems in secondary treatment for the effluent wastewater from the primary basins at Al-Rustumia wastewater treatment plant, Baghdad, Iraq. The treatments were monitored for six weeks while the testsduration were from 4 to 12 September 2018 under continuous wastewater feeding for chemical oxygen demand (COD), total suspended solid (TSS),ammonia-nitrogen(NH4-N) and phosphate (PO4-P) in comparison with FAO and USEPA standards for effluent discharge to evaluate the suitability of treated water for irrigation purposes. Among the systems planted with Phragmites Australia, the hybrid subsurface flow system which cons

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Oct 17 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha

... Show More
Preview PDF