Preferred Language
Articles
/
bsj-3563
Using Backpropagation to Predict Drought Factor in Keetch-Byram Drought Index
...Show More Authors

Forest fires continue to rise during the dry season and they are difficult to stop. In this case, high temperatures in the dry season can cause an increase in drought index that could potentially burn the forest every time. Thus, the government should conduct surveillance throughout the dry season. Continuous surveillance without the focus on a particular time becomes ineffective and inefficient because of preventive measures carried out without the knowledge of potential fire risk. Based on the Keetch-Byram Drought Index (KBDI), formulation of Drought Factor is used just for calculating the drought today based on current weather conditions, and yesterday's drought index. However, to find out the factors of drought a day after, the data is needed about the weather. Therefore, we need an algorithm that can predict the dryness factor. So, the most significant fire potential can be predicted during the dry season. Moreover, daily prediction of the dry season is needed each day to conduct the best action then a qualified preventive measure can be carried out. The method used in this study is the backpropagation algorithm which has functions for calculating, testing and training the drought factors. By using empirical data, some data are trained and then tested until it can be concluded that 100% of the data already well recognized. Furthermore, some other data tested without training, then the result is 60% of the data match. In general, this algorithm shows promising results and can be applied more to complete several variables supporters.

Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Box and Jenkins use models to predict the numbers of patients with hepatitis Alvairose in Iraq
...Show More Authors

The time series of statistical methods mission followed in this area analysis method, Figuring certain displayed on a certain period of time and analysis we can identify the pattern and the factors affecting them and use them to predict the future of the phenomenon of values, which helps to develop a way of predicting the development of the economic development of sound

The research aims to select the best model to predict the number of infections with hepatitis Alvairose models using Box - Jenkins non-seasonal forecasting in the future.

Data were collected from the Ministry of Health / Department of Health Statistics for the period (from January 2009 until December 2013) was used

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 11 2025
Journal Name
Al-rafidain University College For Sciences
Use GARCH model to predict the stock market index, Saudi Arabia
...Show More Authors

In this paper has been building a statistical model of the Saudi financial market using GARCH models that take into account Volatility in prices during periods of circulation, were also study the effect of the type of random error distribution of the time series on the accuracy of the statistical model, as it were studied two types of statistical distributions are normal distribution and the T distribution. and found by application of a measured data that the best model for the Saudi market is GARCH (1,1) model when the random error distributed t. student's .

View Publication Preview PDF
Publication Date
Tue Dec 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Using Artificial Neural Network Models For Forecasting & Comparison
...Show More Authors

The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Using Time Series Methods To Modify The Seasonal Variations in the Consumer Price Index
...Show More Authors

     As is  known that the consumer price index (CPI) is one of the most important  price indices because of its direct effect on the welfare of the individual and his living.

       We have been address the problem of Strongly  seasonal  commodities in calculating  (CPI) and identifying some of the solution.

   We have  used an actual data  for a set of commodities (including strongly seasonal commodities) to calculate the index price by using (Annual Basket With Carry Forward Prices method) . Although this method can be successfully used in the context of seasonal&nbs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
comparison Bennett's inequality and regression in determining the optimum sample size for estimating the Net Reclassification Index (NRI) using simulation
...Show More Authors

 Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 07 2008
Journal Name
Baghdad Science Journal
EFFECT OF HARDENING TO DROUGHT TOLERANCE ON THE MOISTURE CONTENT OF SUNFLOWER PLANT. I. MOISTURE PERCENTAGEIN ROOT AND STEM
...Show More Authors

Two field experiments were conducted during the spring seasons of 2000,2001.The aim was to study the effect of hardening to drought tolerance on moisture percentage in root and stem of sunflower plant during growth stages . Asplit-split plots design was used with three replications.The main plots included irrigation treatments:irrigation to100%(full irrigation),75and50%of available soil water.The sub plots were the cultivars Euroflor and Flame.The sub-sub plots represented four seed soaking treatments :Control(unsoaked),soaking in water ,Paclobutrazol solution(250ppm),and Pix solution(500ppm). The soaking continued for 24 hours then seeds were dried at room temperature until they regained their original weight. Amount of water

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Using of Index Biological Integrity of Phytoplankton (P-IBI) in the Assessment of Water Quality in Don River Section
...Show More Authors

       The multimetric Phytoplankton Index of Biological Integrity (P-IBI) was applied throughout Rostov on Don city (Russia) on 8 Locations in Don River from April – October 2019. The P-IBI is composed from seven metrics: Species Richness Index (SRI), Density of Phytoplankton and total biomass of phytoplankton and Relative Abundance (RA) for blue-green Algae, Green Algae, Bacillariophyceae and Euglenaphyceae Algae. The average P-IBI values fell within the range of (45.09-52.4). Therefore, water throughout the entire study area was characterized by the equally "poor" quality. Negative points of anthropogenic impact detected at the stations are: Above the city of Rostov-on-Don (1 km, higher duct Aksai) was 38.57 i

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
The Cut-off Values of Triglycerides - Glucose Index for Metabolic Syndrome Associated with Type 2 Diabetes Mellitus
...Show More Authors

       The co-occurrence of metabolic syndrome with type 2 diabetes mellitus (T2DM) will potentiate the morbidity and mortality that may be associated with each case. Fasting triglycerides-glucose index (TyG index) has been recommended as a useful marker to predict metabolic syndrome. Our study aimed to introduce gender-specific cut-off values of triglycerides- glucose index   for diagnosing metabolic syndrome associated with type 2 diabetes mellitus. The data were collected from Baghdad hospitals between May - December 2019. The number of eligible participants was 424. National cholesterol education program, Adult Treatment Panel III criteria were used to define metabolic syndrome. Measurement of fasting blood glucose, lipid pro

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Jan 15 2022
Journal Name
Natural Hazards
Temporal dynamic drought interpretation of Sawa Lake: case study located at the Southern Iraqi region
...Show More Authors

View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Plant Archive
The enhancement of drought tolerance for plant onion (allium cepa l.) inoculated by arbuscular mycorrhizal fungi
...Show More Authors

Scopus (3)
Scopus