Preferred Language
Articles
/
jeasiq-2161
comparison Bennett's inequality and regression in determining the optimum sample size for estimating the Net Reclassification Index (NRI) using simulation
...Show More Authors

 Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the data type and type of medical study. The probabilistic values obtained from the artificial neural network are used to calculate the net reclassification index (NRI).  A program was written for this purpose using the statistical programming language (R), where the mean maximum absolute error criterion (MME) of the net reclassification network index (NRI) was used to compare the methods of specifying the sample size and the presence of the number of different default parameters in light of the value of a specific error margin (ε). To verify the performance of the methods using the comparison criteria above were the most important conclusions were that the Bennett inequality method is the best in determining the optimum sample size according to the number of default parameters and the error margin value

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Partial Least Square Regression(PLSR) and Tree Regression by Using Simulation(RT).
...Show More Authors

This research discussed, the process of comparison between the regression model of partial least squares and tree regression, where these models included two types of statistical methods represented by the first type "parameter statistics" of the partial least squares, which is adopted when the number of variables is greater than the number of observations and also when the number of observations larger than the number of variables, the second type is the "nonparametric statistic" represented by tree regression, which is the division of data in a hierarchical way. The regression models for the two models were estimated, and then the comparison between them, where the comparison between these methods was according to a Mean Square

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Tree regression (TR), and Negative binomial regression (NBR) by Using Simulation.
...Show More Authors

            In this paper, the process of comparison between the tree regression model and the negative binomial regression. As these models included two types of statistical methods represented by the first type "non parameter statistic" which is the tree regression that aims to divide the data set into subgroups, and the second type is the "parameter statistic" of negative binomial regression, which is usually used when dealing with medical data, especially when dealing with large sample sizes. Comparison of these methods according to the average mean squares error (MSE) and using the simulation of the experiment and taking different sample

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Poisson Regression and Conway Maxwell Poisson Models Using Simulation
...Show More Authors

Regression models are one of the most important models used in modern studies, especially research and health studies because of the important results they achieve. Two regression models were used: Poisson Regression Model and Conway-Max Well-  Poisson), where this study aimed to make a comparison between the two models and choose the best one between them using the simulation method and at different sample sizes (n = 25,50,100) and with repetitions (r = 1000). The Matlab program was adopted.) to conduct a simulation experiment, where the results showed the superiority of the Poisson model through the mean square error criterion (MSE) and also through the Akaiki criterion (AIC) for the same distribution.

Paper type:

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Some Robust Estimators for Estimate parameters logistic regression model to Binary Response – using simulation)).
...Show More Authors

 

 The logistic regression model of the most important regression models a non-linear which aim getting estimators have a high of efficiency, taking character more advanced in the process of statistical analysis for being a models appropriate form of Binary Data.                                                          

Among the problems that appear as a result of the use of some statistical methods I

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some methods for estimating the parameters of the binary logistic regression model using the genetic algorithm with practical application
...Show More Authors

Abstract

   Suffering the human because of pressure normal life of exposure to several types of heart disease as a result of due to different factors. Therefore, and in order to find out the case of a death whether or not, are to be modeled using binary logistic regression model

    In this research used, one of the most important models of nonlinear regression models extensive use in the modeling of applications statistical, in terms of heart disease which is the binary logistic regression model. and then estimating the parameters of this model using the statistical estimation methods, another problem will be appears in estimating its parameters, as well as when the numbe

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Ridge regression method with some classical methods to estimate the parameters of Lomax distribution by simulation
...Show More Authors

Abstract

In this research provide theoretical aspects of one of the most important statistical distributions which it is Lomax, which has many applications in several areas, set of estimation methods was used(MLE,LSE,GWPM) and compare with (RRE) estimation method ,in order to find out best estimation method set of simulation experiment (36) with many replications  in order  to get mean square error and used it to make compare , simulation experiment  contrast with (estimation method, sample size ,value of location and shape parameter) results show that estimation method effected by simulation experiment factors and ability of using other estimation methods such as(Shrinkage, jackknif

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Semiparametric Bayesian Method with Classical Method for Estimating Systems Reliability using Simulation Procedure
...Show More Authors

               In this research, the semiparametric Bayesian method is compared with the classical  method to  estimate reliability function of three  systems :  k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Slice inverse regression with the principal components in reducing high-dimensions data by using simulation
...Show More Authors

This research aims to study the methods of reduction of dimensions that overcome the problem curse of dimensionality when traditional methods fail to provide a good estimation of the parameters So this problem must be dealt with directly . Two methods were used to solve the problem of high dimensional data, The first method is the non-classical method Slice inverse regression ( SIR ) method and the proposed weight standard Sir (WSIR) method and principal components (PCA) which is the general method used in reducing dimensions,    (SIR ) and (PCA) is based on the work of linear combinations of a subset of the original explanatory variables, which may suffer from the problem of heterogeneity and the problem of linear

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Nonparametric Binary Logistic Regression
...Show More Authors

In this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Parameters Estimation Methods for the Negative Binomial Regression Model under Multicollinearity Problem by Using Simulation
...Show More Authors

This study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators

... Show More
View Publication Preview PDF
Crossref