Throughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
The basis of this paper is to study the concept of almost projective semimodules as a generalization of projective semimodules. Some of its characteristics have been discussed, as well as some results have been generalized from projective semimodules.
In this notion we consider a generalization of the notion of a projective modules , defined using y-closed submodules . We show that for a module M = M1M2 . If M2 is M1 – y-closed projective , then for every y-closed submodule N of M with M = M1 + N , there exists a submodule M`of N such that M = M1M`.
In this work, the notion of principally quasi- injective semimodule is introduced, discussing the conditions needed to get properties and characterizations similar or related to the case in modules.
Let be an -semimodule with endomorphism semiring Ș. The semimodule is called principally quasi-injective, if every -homomorphism from any cyclic subsemimodule of to can be extended to an endomorphism of .
The aim of this paper is introducing the concept of (ɱ,ɳ) strong full stability B-Algebra-module related to an ideal. Some properties of (ɱ,ɳ)- strong full stability B-Algebra-module related to an ideal have been studied and another characterizations have been given. The relationship of (ɱ,ɳ) strong full stability B-Algebra-module related to an ideal that states, a B- -module Ӽ is (ɱ,ɳ)- strong full stability B-Algebra-module related to an ideal , if and only if for any two ɱ-element sub-sets and of Ӽɳ, if , for each j = 1, …, ɱ, i = 1,…, ɳ and implies Ạɳ( ) Ạɳ( have been proved..
The Arabic pronouns received a lot of attention from the ancient Arab grammarians, so they explained their origins, the different forms of their structure, and the aspects of the Arabs’ use of them, and explained the aspects and reasons for these uses, with what they had of linguistic insight, which guided them to clarify the truth of these pronouns.
And recently, this research seeks new knowledge of the development of the structure of the nominative pronouns (he), (she), (them), (taa), and (waw) between dialects and towards classical Arabic, by analyzing the structure of these pronouns into their components. Its linguistic formulas are traced from the ancient Arabic texts, and by ancient I mean the texts of the era of linguistic ci