Preferred Language
Articles
/
bsj-3313
Semihollow-Lifting Modules and Projectivity
...Show More Authors

Throughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Dual Notions of Prime Modules
...Show More Authors

       Let R be a commutative ring with unity .M an R-Module. M is called coprime module     (dual notion of prime module) if ann M =ann M/N for every proper submodule N of M   In this paper we study coprime modules we give many basic properties of this concept. Also we give many characterization of it under certain of module.

View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
On Quasi-Small Prime Modules
...Show More Authors
Abstract<p>Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.</p>
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
H - He-essential-supplemented modules
...Show More Authors

Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Relative Quasi-Injective Modules
...Show More Authors

    Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,) there exists a submodule X of  such that  f (N)  X ≈ M, where  is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in  embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N.         Moreover, we generalize some properties of weakly N-injectiv

... Show More
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
T-Small Quasi-Dedekind modules
...Show More Authors
Abstract<p>Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if, <inline-formula> <tex-math><?CDATA $\forall \,w\,\in En{d}_{R}(Q),\,w\ne 0$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <mo>∀</mo> <mspace width="0.25em"></mspace> <mi>w</mi> <mspace width="0.25em"></mspace> <mo></mo></mrow></math></inline-formula></p> ... Show More
View Publication
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Interdisciplinary Mathematics
Pr-small R-submodules of modules and Pr-radicals
...Show More Authors

The goal of this discussion is to study the twigged of pure-small (pr-small) sub- moduleof a module W as recirculation of a small sub-module, and we give some basic idiosyncrasy and instances of this kind of sub-module. Also, we give the acquaint of pure radical of a module W (pr-radical) with peculiarities.

Scopus (2)
Scopus Clarivate Crossref
Publication Date
Wed Jul 05 2023
Journal Name
Thesis
P-Rational Submodules and Certain Types of Polyform Modules
...Show More Authors

The main objective of this thesis is to study new concepts (up to our knowledge) which are P-rational submodules, P-polyform and fully polyform modules. We studied a special type of rational submodule, called the P-rational submodule. A submodule N of an R-module M is called P-rational (Simply, N≤_prM), if N is pure and Hom_R (M/N,E(M))=0 where E(M) is the injective hull of M. Many properties of the P-rational submodules were investigated, and various characteristics were given and discussed that are analogous to the results which are known in the concept of the rational submodule. We used a P-rational submodule to define a P-polyform module which is contained properly in the polyform module. An R-module M is called P-polyform if every es

... Show More
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
T-Essentially Coretractable and Weakly T-Essentially Coretractable Modules
...Show More Authors

        A new generalizations of coretractable modules are introduced where a module  is called t-essentially (weakly t-essentially) coretractable if for all proper submodule  of , there exists f End( ), f( )=0 and Imf tes  (Im f + tes ). Some basic properties are studied and many relationships between these classes and other related one are presented.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Iraqi Journal Of Science,
F-J-semi Regular Modules Department
...Show More Authors

Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
Essential T-small quasi-Dedekind modules
...Show More Authors
Abstract<p>Let M be an R-module, where R be a commutative; ring with identity. In this paper, we defined a new kind of submodules, namely T-small quasi-Dedekind module(T-small Q-D-M) and essential T-small quasi-Dedekind module(ET-small Q-D-M). Let T be a proper submodule of an R-module M, M is called an (T-small Q-D-M) if, for all f ∊ End(M), f ≠ 0, implies <italic>Kerf</italic> is an T-small submodule of M <italic>(Kerf</italic>«<sub>T</sub> <italic>M)</italic>, if T≠ 0 then T ⊈ <italic>Kerf</italic>. In case <italic>Kerf</italic> is an essential T-small submodule of M <italic>(Kerf <<</italic></p> ... Show More
View Publication
Scopus Crossref