Preferred Language
Articles
/
bsj-2623
On Higher N-Derivation Of Prime Rings
...Show More Authors

The main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Jordan ?-Centralizers of Prime and Semiprime Rings
...Show More Authors

The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .

View Publication Preview PDF
Crossref
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
Orthogonal Symmetric Higher bi-Derivations on Semiprime Г-Rings
...Show More Authors

   Let M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.

View Publication Preview PDF
Crossref (1)
Clarivate Crossref
Publication Date
Tue Mar 14 2023
Journal Name
Iraqi Journal Of Science
Characterizing Jordan Higher Centralizers on Triangular Rings through Zero Product
...Show More Authors

n this paper , we prove that if T is a 2-torsion free triangular ring and be a family of additive mapping then satisfying is a higher centralizer which is means that is Jordan higher centralizer on 2-torsion free triangular ring if and only if is a higher centralizer and also we prove that if be a family of additive mapping satisfying the relation Σ , Then is a higher centralizer.

View Publication Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Semigroup ideal in Prime Near-Rings with Derivations
...Show More Authors

In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.

View Publication Preview PDF
Crossref
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Generalized Commuting Mapping in Prime and Semiprime Rings
...Show More Authors

     Let R be an associative ring. The essential purpose of the present paper is to introduce the concept of generalized commuting mapping of R. Let U be a non-empty subset of R, a mapping   : R  R is called a generalized commuting mapping on U if there exist a mapping :R R such that =0, holds for all U. Some results concerning the new concept are presented.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Commutativity Results for Multiplicative (Generalized) (α,β) Reverse Derivations on Prime Rings
...Show More Authors

Let  be a prime ring,  be a non-zero ideal of  and   be automorphism on. A mapping  is called a multiplicative (generalized)  reverse derivation if  where  is any map (not necessarily additive). In this paper, we proved the commutativity of a prime ring R admitting a multiplicative (generalized)  reverse derivation  satisfying any one of the properties:

 

 

 for all x, y  

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
Orthogonal Generalized Symmetric Higher bi-Derivations on Semiprime Г-Rings .
...Show More Authors

In this paper a Г-ring M is presented. We will study the concept of orthogonal generalized symmetric higher bi-derivations on Г-ring. We prove that if M is a 2-torsion free semiprime    Г-ring ,  and  are orthogonal generalized symmetric higher bi-derivations  associated with symmetric higher bi-derivations   respectively for all n ϵN.

View Publication Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
N Sequence Prime Ideals
...Show More Authors

    In this paper, the concepts of -sequence prime ideal and -sequence quasi prime ideal are introduced. Some properties of such ideals are investigated. The relations between -sequence prime ideal and each of primary ideal, -prime ideal, quasi prime ideal, strongly irreducible ideal, and closed ideal, are studied. Also, the ideals of a principal ideal domain are classified into quasi prime ideals and -sequence quasi prime ideals.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Lie and Jordan Structure in Prime Γ- rings with Γ-centralizing Derivations
...Show More Authors

Let M be a prime Γ-ring satisfying abc  abc for all a,b,cM and
,  with center Z, and U be a Lie (Jordan) ideal. A mapping d :M M
is called Γ- centralizing if u d u Z  [ , ( )] for all uU and  .In this paper
, we studied Lie and Jordan ideal in a prime Γ - ring M together with Γ -
centralizing derivations on U.

View Publication Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
Some Results On Lie Ideals With (σ,τ)-derivationIn Prime Rings
...Show More Authors

In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.

View Publication Preview PDF
Crossref