The main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .
Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.
In this paper, new concepts which are called: left derivations and generalized left derivations in nearrings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some
algebraic identities on generalized left derivation has been studied.
In this paper, we introduce the concept of almost Quasi-Frobcnius fuzzy ring as a " " of Quasi-Frobenius ring. We give some properties about this concept with qoutient fuzzy ring. Also, we study the fuzzy external direct sum of fuzzy rings.
A non-zero module M is called hollow, if every proper submodule of M is small. In this work we introduce a generalization of this type of modules; we call it prime hollow modules. Some main properties of this kind of modules are investigated and the relation between these modules with hollow modules and some other modules are studied, such as semihollow, amply supplemented and lifting modules.
Let R be a commutative ring with identity and M be an unitary R-module. Let ï¤(M) be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is ï¹-prime if for each r  R and x  M, if rx  P, then either x  P + ï¹(P) or r M ïƒ P + ï¹(P) . Some of the properties of this concept will be investigated. Some characterizations of ï¹-prime submodules will be given, and we show that under some assumptions prime submodules and ï¹-prime submodules are coincide.
Tigris River water that comes from Turkey represents the main water resource of this river in Iraq. The expansion in water river implementations has formed a source of trouble for the workers in the water resources management field in Iraqi. Unfortunately, there is no agreement between Iraq and Turkey till now to share the water of this international river. Consequently, the optimal operation of water resources systems, particularly a multi-objective, multi-reservoir, is of the most necessity at the present time.
In this research two approaches, were used the dynamic programming (DP) approach and simulation model to find the optimal monthly operation of Ilisu Dam (from an Iraqi point of view) through a comp
... Show MoreIn this paper the centralizing and commuting concerning skew left -derivations and skew left -derivations associated with antiautomorphism on prime and semiprime rings were studied and the commutativity of Lie ideal under certain conditions were proved.
The limited availability of the two-circle diffractometer to collect intensity measurements down to the monoclinic system has been extended in a novel procedure to collect intensities for the triclinic system. The procedure involves the derivation of matrix elements from graphical representation of the reciprocal lattice. Offset of the origins of the upper layers from that of the zero-layer - characteristic of triclinic system - is determined and the 3 x 3 matrix elements are evaluated accordingly. Details of crystal alignment by X-rays for the triclinic system utilizing the intensities of equivalent reflections is described
This paper investigates the concept (α, β) derivation on semiring and extend a few results of this map on prime semiring. We establish the commutativity of prime semiring and investigate when (α, β) derivation becomes zero.
In this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.