The main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .
The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .
Let M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.
n this paper , we prove that if T is a 2-torsion free triangular ring and be a family of additive mapping then satisfying is a higher centralizer which is means that is Jordan higher centralizer on 2-torsion free triangular ring if and only if is a higher centralizer and also we prove that if be a family of additive mapping satisfying the relation Σ , Then is a higher centralizer.
In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.
Let R be an associative ring. The essential purpose of the present paper is to introduce the concept of generalized commuting mapping of R. Let U be a non-empty subset of R, a mapping : R R is called a generalized commuting mapping on U if there exist a mapping :R R such that =0, holds for all U. Some results concerning the new concept are presented.
Let be a prime ring, be a non-zero ideal of and be automorphism on. A mapping is called a multiplicative (generalized) reverse derivation if where is any map (not necessarily additive). In this paper, we proved the commutativity of a prime ring R admitting a multiplicative (generalized) reverse derivation satisfying any one of the properties:
for all x, y
In this paper a Г-ring M is presented. We will study the concept of orthogonal generalized symmetric higher bi-derivations on Г-ring. We prove that if M is a 2-torsion free semiprime Г-ring , and are orthogonal generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations respectively for all n ϵN.
In this paper, the concepts of -sequence prime ideal and -sequence quasi prime ideal are introduced. Some properties of such ideals are investigated. The relations between -sequence prime ideal and each of primary ideal, -prime ideal, quasi prime ideal, strongly irreducible ideal, and closed ideal, are studied. Also, the ideals of a principal ideal domain are classified into quasi prime ideals and -sequence quasi prime ideals.
Let M be a prime Γ-ring satisfying abc abc for all a,b,cM and
, with center Z, and U be a Lie (Jordan) ideal. A mapping d :M M
is called Γ- centralizing if u d u Z [ , ( )] for all uU and .In this paper
, we studied Lie and Jordan ideal in a prime Γ - ring M together with Γ -
centralizing derivations on U.
In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.