Preferred Language
Articles
/
bsj-2621
Using Bernoulli Equation to Solve Burger's Equation

In this paper we find the exact solution of Burger's equation after reducing it to Bernoulli equation. We compare this solution with that given by Kaya where he used Adomian decomposition method, the solution given by chakrone where he used the Variation iteration method (VIM)and the solution given by Eq(5)in the paper of M. Javidi. We notice that our solution is better than their solutions.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Indian Journal Of Science And Technology
Improvement of the Accuracy of the Perturbed Orbital Elements for LEO Satellite by Improving 4th Order Runge–Kutta’s Method

Background/objectives: To study the motion equation under all perturbations effect for Low Earth Orbit (LEO) satellite. Predicting a satellite’s orbit is an important part of mission exploration. Methodology: Using 4th order Runge–Kutta’s method this equation was integrated numerically. In this study, the accurate perturbed value of orbital elements was calculated by using sub-steps number m during one revolution, also different step numbers nnn during 400 revolutions. The predication algorithm was applied and orbital elements changing were analyzed. The satellite in LEO influences by drag more than other perturbations regardless nnn through semi-major axis and eccentricity reducing. Findings and novelty/improvement: The results demo

... Show More
Crossref (1)
Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
Dynamic Response Assessment of the Nigerian 330kV Transmission System

This paper presents the dynamic responses of generators in a multi-machine power system.  The fundamental swing equations for a multi-machine stability analysis are revisited. The swing equations are solved to investigate the influence of a three-phase fault on the network largest load bus. The Nigerian 330kV transmission network was used as a test case for the study. The time domain simulation approach was explored to determine if the system could withstand a 3-phase fault. The stability of the transmission network is estimated considering the dynamic behaviour of the system under various contingency conditions. This study identifies Egbin, Benin, Olorunsogo, Akangba, Sakete, Omotosho and Oshogbo as the key buses w

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Semigroup Theory for Dual Dynamic Programming

In this paper, the nonclassical approach to dynamic programming for the optimal control problem via strongly continuous semigroup has been presented. The dual value function VD ( .,. ) of the problem is defined and characterized. We find that it satisfied the dual dynamic programming principle and dual Hamilton Jacobi –Bellman equation. Also, some properties of VD (. , .) have been studied, such as, various kinds of continuities and boundedness, these properties used to give a sufficient condition for optimality. A suitable verification theorem to find a dual optimal feedback control has been proved. Finally gives an example which illustrates the value of the theorem which deals with the sufficient condition for optimality.

<

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Determination of the Mathematical Model for Plasma Electronic Coefficients of the Earth's Ionosphere

In this research, electron coefficients such as total collision frequency (colt/N), total ionization frequency (viz/N), and Power (P/N) for different gases such as (Ar, He, N2 and O2 (in Earth’s ionosphere have been calculated by applying the Boltzmann equation utilizing BOLSIG +, and it has been discovered that there is a significant impact of reducing the electric field (E/N) on electronic coefficients under which (E/N) increases. In addition, influence of (E/N) on electronic coefficients was studied. Reducing the electric field was chosen in the restricted range (1-100) Td, and the electronic coefficients for gases in the limited range (50-2000) km of the Earth's ionosphere. A positive correlation has been explained between all the

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Asymptotic Stability for Some Types of Nonlinear Fractional Order Differential-Algebraic Control Systems

The aim of this paper is to study the asymptotically stable solution of nonlinear single and multi fractional differential-algebraic control systems, involving feedback control inputs, by an effective approach that depends on necessary and sufficient conditions.

Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
Blow-up Rate Estimates and Blow-up Set for a System of Two Heat Equations with Coupled Nonlinear Neumann Boundary Conditions

This paper deals with the blow-up properties of positive solutions to a parabolic system of two heat equations, defined on a ball in  associated with coupled Neumann boundary conditions of exponential type. The upper bounds of blow-up rate estimates are derived. Moreover, it is proved that the blow-up in this problem can only occur on the boundary.

Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
On Blow-up Solutions of A Parabolic System Coupled in Both Equations and Boundary Conditions

This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.

Scopus (10)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Sep 01 2022
Journal Name
Physical Chemistry Research
Dielectric Properties of Ultra-Low Dielectric Constant PVA-Pentaerythritol/MnO2 Nanocomposite

this work, a simple method was used to prepare the MnO2 nanoparticles. These nanoparticles then were characterized by several techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and atomic force microscope (AFM). The results showed that the diffraction peak of MnO2 nanoparticles was similar to that of standard data. The images of AFM and SEM indicated that the MnO2 nanorods were growing from the MnO2 nano spherical shape. PVA-pentaerythritol/MnO2 nanocomposite films were fabricated by evaporating casting method. The dielectric constant and loss tangent of P-Ery/MnO2 films were measured between 10 kHz and 1 MHz using LCR. As the content of MnO2 increased, the dielectric constant

... Show More
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solutions Of The Nonlocal Problems For The Diffusion Partial Differential Equations

    In this work, we use the explicit and the implicit finite-difference methods to solve the nonlocal problem that consists of the diffusion equations together with nonlocal conditions. The nonlocal conditions for these partial differential equations are approximated by using the composite trapezoidal rule, the composite Simpson's 1/3 and 3/8 rules. Also, some numerical examples are presented to show the efficiency of these methods.

View Publication Preview PDF
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
The Operator S(a,b;θ_x ) for the Polynomials Z_n (x,y,a,b;q)

In this work, we give an identity that leads to establishing the operator . Also, we introduce the polynomials . In addition, we provide Operator proof for the generating function with its extension and the Rogers formula for . The generating function with its extension and the Rogers formula for the bivariate Rogers-Szegö polynomials  are deduced. The Rogers formula for  allows to obtain the inverse linearization formula for , which allows to deduce the inverse linearization formula for . A solution to a q-difference equation is introduced and the solution is expressed in terms of the operators . The q-difference method is used to recover an identity of the operator  and the generating function for the polynomials

... Show More
Scopus (8)
Crossref (2)
Scopus Crossref
View Publication Preview PDF