In this research, electron coefficients such as total collision frequency (colt/N), total ionization frequency (viz/N), and Power (P/N) for different gases such as (Ar, He, N2 and O2 (in Earth’s ionosphere have been calculated by applying the Boltzmann equation utilizing BOLSIG +, and it has been discovered that there is a significant impact of reducing the electric field (E/N) on electronic coefficients under which (E/N) increases. In addition, influence of (E/N) on electronic coefficients was studied. Reducing the electric field was chosen in the restricted range (1-100) Td, and the electronic coefficients for gases in the limited range (50-2000) km of the Earth's ionosphere. A positive correlation has been explained between all the plasma electronic coefficients and (E/N) for the four gases. It was found that He gas has higher electronic coefficients than other gases in the Earth's ionosphere because they have lower electron binding energy.
KA Hadi, AH Asma’a, IJONS, 2018 - Cited by 1
In this study, the electron coefficients; Mean energy , Mobility and Drift velocity of different gases Ar, He, N2 and O2 in the ionosphere have been calculated using BOLSIG+ program to check the solution results of Boltzmann equation results, and effect of reduced electric field (E/N) on electronic coefficients. The electric field has been specified in the limited range 1-100 Td. The gases were in the ionosphere layer at an altitude frame 50-2000 km. Furthermore, the mean energy and drift velocity steadily increased with increases in the electric field, while mobility was reduced. It turns out that there is a significant and obvious decrease in mobility as a result of inelastic collisions and in addition lit
... Show MoreIn this work, the electrostatic probe was utilized to estimate the density of electrons for plasma generated around reentry vehicles that have a geometrically blunt nose at high-altitude. The thermocouple uses to measured electron temperature, which is equal to the temperature of the gas, on board the MAC spacecraft. In the spacecraft backflow field, electrostatic probe measurements were taken at five separate regions 1 to 5 cm from the body of the spacecraft. Over an altitude range of 90 to 50 km with an electron density of 108 to 1012 1/cm3, respectively. The measured electron temperature ranged from 0.05 to 0.9 electron volts and the maximum re-entry velocity of the spacecraft was about 7048 m
... Show MoreThe transformation of a physical system to mathematical base is very important due to analysis of the systems behavior. In this paper an electric power system is considered, we design mathematical model for the determination of the increase in operational cost of transmission line from Haditha Dam substation to Qa'im substation . We derived relations which the approximate distance for VARS transmission must satisfy with considering minimum losses in the system. MATLAB computer programming is used to obtain the numerical results. The developed mathematical model and the numerical results could be useful to electric power systems engineers
The effect of number of pulses of pulsed laser on materials is studied analytically, different pulses has been used with the same delay time. The depth of possible damage to the surface of copper and titanium as well as depth of the crater to both materials were considered in this study. The study revealed that linear model is only possible when estimating depth of possible damage for copper material, this means that the depth of possible damage increases with the increment of number of laser pulses .As for titanium material, it is found the relationship is nonlinear. The depth of possible damage of titanium and copper is not the same, and copper seems to be more predictable than titanium.
This model is an extension to H.M.M.S and related developments models of a single product. These models will be converted to deal with Multiproduct for productive company. This model executed by computer programming technique to maximize profits
In this research a recent developed practical modeling technique is applied for the glucose regulation system identification. By using this technique a set of mathematical models is obtained instead of single one to compensate for the loss of information caused by the optimization technique in curve fitting algorithms, the diversity of members inside the single set is interpreted in term of restricted range of its parameters, also a diagnosis criteria is developed for detecting any disorder in the glucose regulation system by investigating the influence of variation of the parameters on the response of the system, this technique is applied in this research practically for 20 cases with association of National Center for
... Show More