In this paper we find the exact solution of Burger's equation after reducing it to Bernoulli equation. We compare this solution with that given by Kaya where he used Adomian decomposition method, the solution given by chakrone where he used the Variation iteration method (VIM)and the solution given by Eq(5)in the paper of M. Javidi. We notice that our solution is better than their solutions.
In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show MoreIn this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.
In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those
... Show MoreDetection moving car in front view is difficult operation because of the dynamic background due to the movement of moving car and the complex environment that surround the car, to solve that, this paper proposed new method based on linear equation to determine the region of interest by building more effective background model to deal with dynamic background scenes. This method exploited the permitted region between cars according to traffic law to determine the region (road) that in front the moving car which the moving cars move on. The experimental results show that the proposed method can define the region that represents the lane in front of moving car successfully with precision over 94%and detection rate 86
... Show MoreThe main objective of this research is to find the coefficient of permeability (k) of the soil and especially clayey soil by finding the degree of consolidation (rate of consolidation). New modify procedure is proposed by using the odometer (consolidation) device. The ordinary conventional permeability test usually takes a long time by preparing and by testing and this could cause some problems especially if there is a need to do a large number of this test and there were a limited number of technicians and/or apparatus. From this point of view the importance of this research is clear, since the modified procedure will require a time of 25 minute only. Derivation made to produce an equation which could be used to fined the permeabi
... Show MoreBuzurgan oil field suffers from the phenomenon of asphaltene precipitation. The serious negatives of this phenomenon are the decrease in production caused by clogging of the pores and decrease in permeability and wettability of the reservoir rocks, in addition to the blockages that occur in the pipeline transporting crude oil. The presence of laboratories in the Iraqi oil companies helped to conduct the necessary experiments, such as gas chromatography (GC) test to identify the components of crude oil and the percentages of each component, These laboratory results consider the main elements in deriving a new equation called modified colloidal instability index (MCII) equation based on a well-known global equation called colloidal in
... Show MoreAn Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .
The method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.
This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural
... Show More