A technique for noise removal is proposed based on slantlet transform. The proposed algorithm tends to reduce the computational time by reducing the total number of frames through dividing the video film into sub films, finding master frames, applying the slantlet transform which is orthogonal discrete wavelet transform with two zero moments and with improved time localization. Thresholding technique is applied to the details coefficients of the slantlet transform .The denoised frame is repeated to retain the original frame sequence. The proposed method was applied by using MATLAB R2010a with video contaminated by white Gaussian noise .The experimental results show that the proposed method provides better subjective and objective quality, and obtain up to 5-6 dB PSNR improvement from the frames contaminated by noise.
Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors. In this paper, tried to implement an automated segmentation methods of gray level CT images is used to provide information such as anatomical structure and identifying the Region of Interest (ROI) i.e. locate tumor, lesion and other in kidney.
A CT image has inhomogeneity, noise which affects the continuity and accuracy of the images segmentation. In
This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.
This work presents plants recognition system with rotation invariant based on plant leaf. Wavelet energy features are extracted for sub-images (blocks) beside three of leaf shape features: [area, perimeter, circularity ratio]. (8) species of leaves are used in different size and color, (15) samples for each leaf are used. Leaves images are rotated at angles: 90˚, 180˚, 270˚(counterclockwise,clockwise). Euclidean distance is used, the recognition rate was 98.2% with/without rotation.
Quantitative analysis of human voice has been subject of interest and the subject gained momentum when human voice was identified as a modality for human authentication and identification. The main organ responsible for production of sound is larynx and the structure of larynx along with its physical properties and modes of vibration determine the nature and quality of sound produced. There has been lot of work from the point of view of fundamental frequency of sound and its characteristics. With the introduction of additional applications of human voice interest grew in other characteristics of sound and possibility of extracting useful features from human voice. We conducted a study using Fast Fourier Transform (FFT) technique to analy
... Show MoreThe past years have seen a rapid development in the area of image compression techniques, mainly due to the need of fast and efficient techniques for storage and transmission of data among individuals. Compression is the process of representing the data in a compact form rather than in its original or incompact form. In this paper, integer implementation of Arithmetic Coding (AC) and Discreet Cosine Transform (DCT) were applied to colored images. The DCT was applied using the YCbCr color model. The transformed image was then quantized with the standard quantization tables for luminance and chrominance. The quantized coefficients were scanned by zigzag scan and the output was encoded using AC. The results showed a decent compression ratio
... Show MoreRecent advances in wireless communication systems have made use of OFDM technique to achieve high data rate transmission. The sensitivity to frequency offset between the carrier frequencies of the transmitter and the receiver is one of the major problems in OFDM systems. This frequency offset introduces inter-carrier interference in the OFDM symbol and then the BER performance reduced. In this paper a Multi-Orthogonal-Band MOB-OFDM system based on the Discrete Hartley Transform (DHT) is proposed to improve the BER performance. The OFDM spectrum is divided into equal sub-bands and the data is divided between these bands to form a local OFDM symbol in each sub-band using DHT. The global OFDM symbol is formed from all sub-bands together using
... Show MoreIn this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-
... Show MoreIn this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent r
... Show MoreA simulation study of using 2D tomography to reconstruction a 3D object is presented. The 2D Radon transform is used to create a 2D projection for each slice of the 3D object at different heights. The 2D back-projection and the Fourier slice theorem methods are used to reconstruction each 2D projection slice of the 3D object. The results showed the ability of the Fourier slice theorem method to reconstruct the general shape of the body with its internal structure, unlike the 2D Radon method, which was able to reconstruct the general shape of the body only because of the blurring artefact, Beside that the Fourier slice theorem could not remove all blurring artefact, therefore, this research, suggested the threshold technique to eliminate the
... Show MoreRestoration is the main process in many applications. Restoring an original image from a damaged image is the foundation of the restoring operation, either blind or non-blind. One of the main challenges in the restoration process is to estimate the degradation parameters. The degradation parameters include Blurring Function (Point Spread Function, PSF) and Noise Function. The most common causes of image degradation are errors in transmission channels, defects in the optical system, inhomogeneous medium, relative motion between object and camera, etc. In our research, a novel algorithm was adopted based on Circular Hough Transform used to estimate the width (radius, sigma) of the Point Spread Function. This algorithm is based o
... Show More