A technique for noise removal is proposed based on slantlet transform. The proposed algorithm tends to reduce the computational time by reducing the total number of frames through dividing the video film into sub films, finding master frames, applying the slantlet transform which is orthogonal discrete wavelet transform with two zero moments and with improved time localization. Thresholding technique is applied to the details coefficients of the slantlet transform .The denoised frame is repeated to retain the original frame sequence. The proposed method was applied by using MATLAB R2010a with video contaminated by white Gaussian noise .The experimental results show that the proposed method provides better subjective and objective quality, and obtain up to 5-6 dB PSNR improvement from the frames contaminated by noise.
Time series analysis is the statistical approach used to analyze a series of data. Time series is the most popular statistical method for forecasting, which is widely used in several statistical and economic applications. The wavelet transform is a powerful mathematical technique that converts an analyzed signal into a time-frequency representation. The wavelet transform method provides signal information in both the time domain and frequency domain. The aims of this study are to propose a wavelet function by derivation of a quotient from two different Fibonacci coefficient polynomials, as well as a comparison between ARIMA and wavelet-ARIMA. The time series data for daily wind speed is used for this study. From the obtained results, the
... Show MoreThis paper is concerned with the design and implementation of an image compression method based on biorthogonal tap-9/7 discrete wavelet transform (DWT) and quadtree coding method. As a first step the color correlation is handled using YUV color representation instead of RGB. Then, the chromatic sub-bands are downsampled, and the data of each color band is transformed using wavelet transform. The produced wavelet sub-bands are quantized using hierarchal scalar quantization method. The detail quantized coefficient is coded using quadtree coding followed by Lempel-Ziv-Welch (LZW) encoding. While the approximation coefficients are coded using delta coding followed by LZW encoding. The test results indicated that the compression results are com
... Show MoreThe need for a flexible and cost effective biometric security system is the inspired of this paper. Face recognition is a good contactless biometric and it is suitable and applicable for Wireless Sensor Network (WSN). Image processing and image communication is a challenges task in WSN due to the heavy processing and communication that reduce the life time of the network. This paper proposed a face recognition algorithm on WSN depending on the principles of the unique algorithm that hold the capacity of the network to the sink node and compress the communication data to 89.5%. An efficient hybrid method is introduced based upon the advantage of Zak transform to offprint the farthest different features of the face and Eigen face method to
... Show MoreGrabisch and Labreuche have recently proposed a generalization of capacities, called the bi-capacities. Recently, a new approach for studying bi-capacities through introducing a notion of ternary-element sets proposed by the author. In this paper, we propose many results such as bipolar Mobius transform, importance index, and interaction index of bi-capacities based on our approach.
In this work, the fractional damped Burger's equation (FDBE) formula = 0,
Abstract
The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test images, and compared with some present methods.
... Show MoreIn this paper, several types of space-time fractional partial differential equations has been solved by using most of special double linear integral transform â€double Sumudu â€. Also, we are going to argue the truth of these solutions by another analytically method “invariant subspace methodâ€. All results are illustrative numerically and graphically.
This paper introduced a hybrid technique for lossless image compression of natural and medical images; it is based on integrating the bit plane slicing and Wavelet transform along with a mixed polynomial of linear and non linear base. The experiments showed high compression performance with fully grunted reconstruction.
In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms wit
... Show MoreIn this paper, a new high-performance lossy compression technique based on DCT is proposed. The image is partitioned into blocks of a size of NxN (where N is multiple of 2), each block is categorized whether it is high frequency (uncorrelated block) or low frequency (correlated block) according to its spatial details, this done by calculating the energy of block by taking the absolute sum of differential pulse code modulation (DPCM) differences between pixels to determine the level of correlation by using a specified threshold value. The image blocks will be scanned and converted into 1D vectors using horizontal scan order. Then, 1D-DCT is applied for each vector to produce transform coefficients. The transformed coefficients will be qua
... Show More