The past years have seen a rapid development in the area of image compression techniques, mainly due to the need of fast and efficient techniques for storage and transmission of data among individuals. Compression is the process of representing the data in a compact form rather than in its original or incompact form. In this paper, integer implementation of Arithmetic Coding (AC) and Discreet Cosine Transform (DCT) were applied to colored images. The DCT was applied using the YCbCr color model. The transformed image was then quantized with the standard quantization tables for luminance and chrominance. The quantized coefficients were scanned by zigzag scan and the output was encoded using AC. The results showed a decent compression ratio with high image quality.
Nowadays, the advances in information and communication technologies open the wide door to realize the digital world’s dream. Besides, within the clear scientific scope in all fields, especially the medical field, it has become necessary to harness all the scientific capabilities to serve people, especially in medical-related services. The medical images represent the basis of clinical diagnosis and the source of telehealth and teleconsultation processes. The exchange of these images can be subject to several challenges, such as transmission bandwidth, time delivery, fraud, tampering, modifying, privacy, and more. This paper will introduce an algorithm consisting a combination of compression and encryption techniques to meet such chall
... Show MoreIn this paper, an adaptive polynomial compression technique is introduced of hard and soft thresholding of transformed residual image that efficiently exploited both the spatial and frequency domains, where the technique starts by applying the polynomial coding in the spatial domain and then followed by the frequency domain of discrete wavelet transform (DWT) that utilized to decompose the residual image of hard and soft thresholding base. The results showed the improvement of adaptive techniques compared to the traditional polynomial coding technique.
Image compression is one of the data compression types applied to digital images in order to reduce their high cost for storage and/or transmission. Image compression algorithms may take the benefit of visual sensitivity and statistical properties of image data to deliver superior results in comparison with generic data compression schemes, which are used for other digital data. In the first approach, the input image is divided into blocks, each of which is 16 x 16, 32 x 32, or 64 x 64 pixels. The blocks are converted first into a string; then, encoded by using a lossless and dictionary-based algorithm known as arithmetic coding. The more occurrence of the pixels values is codded in few bits compare with pixel values of less occurre
... Show More Today, the use of iris recognition is expanding globally as the most accurate and reliable biometric feature in terms of uniqueness and robustness. The motivation for the reduction or compression of the large databases of iris images becomes an urgent requirement. In general, image compression is the process to remove the insignificant or redundant information from the image details, that implicitly makes efficient use of redundancy embedded within the image itself. In addition, it may exploit human vision or perception limitations to reduce the imperceptible information.
This paper deals with reducing the size of image, namely reducing the number of bits required in representing the
Color image compression is a good way to encode digital images by decreasing the number of bits wanted to supply the image. The main objective is to reduce storage space, reduce transportation costs and maintain good quality. In current research work, a simple effective methodology is proposed for the purpose of compressing color art digital images and obtaining a low bit rate by compressing the matrix resulting from the scalar quantization process (reducing the number of bits from 24 to 8 bits) using displacement coding and then compressing the remainder using the Mabel ZF algorithm Welch LZW. The proposed methodology maintains the quality of the reconstructed image. Macroscopic and
Iris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the origin
... Show More