Preferred Language
Articles
/
bsj-2483
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
1st Samarra International Conference For Pure And Applied Sciences (sicps2021): Sicps2021
Scopus Crossref
View Publication
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Periodic Solutions For Nonlinear Systems of Multiple Integro-differential Equations that Contain Symmetric Matrices with Impulsive Actions

This paper examines a new nonlinear system of multiple integro-differential equations containing symmetric matrices with impulsive actions. The numerical-analytic method of ordinary differential equations and Banach fixed point theorem are used to study the existence, uniqueness and stability of periodic solutions of impulsive integro-differential equations with piecewise continuous functions. This study is based on the Hölder condition in which the ordering ,  and  are real numbers between 0 and 1.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Diyala Journal Of Human Research
Stability of the Finite Difference Methods of Fractional Partial Differential Equations Using Fourier Series Approach

The fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).

View Publication Preview PDF
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
An Approximate Solution of the Space Fractional-Order Heat Equation by the Non-Polynomial Spline Functions

     The linear non-polynomial spline is used here to solve the fractional partial differential equation (FPDE). The fractional derivatives are described in the Caputo sense. The tensor products are given for extending the one-dimensional linear non-polynomial spline to a two-dimensional spline  to solve the heat equation. In this paper, the convergence theorem of the method used to the exact solution is proved and the numerical examples show the validity of the method. All computations are implemented by Mathcad15.

Scopus (4)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Journal Of The College Of Education For Women
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
An Efficient Algorithm for Fuzzy Linear Fractional Programming Problems via Ranking Function

In many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler an

... Show More
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Apr 06 2014
Journal Name
Journal Of Economics And Administrative Sciences
Modeling Absolute Deviations Method by using Numerical Methods to measure the dispersion of the proposal for error

Is in this research review of the way minimum absolute deviations values ​​based on linear programming method to estimate the parameters of simple linear regression model and give an overview of this model. We were modeling method deviations of the absolute values ​​proposed using a scale of dispersion and composition of a simple linear regression model based on the proposed measure. Object of the work is to find the capabilities of not affected by abnormal values by using numerical method and at the lowest possible recurrence.

 

Crossref
View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Exponentially Fitted Diagonally Implicit EDITRK Method for Solving ODEs

This paper derives the EDITRK4 technique, which is an exponentially fitted diagonally implicit RK method for solving ODEs . This approach is intended to integrate exactly initial value problems (IVPs), their solutions consist of linear combinations of the group functions  and  for exponentially fitting  problems, with  being the problem’s major frequency utilized to improve the precision of the method. The modified  method EDITRK4 is a new three-stage fourth-order exponentially-fitted diagonally implicit approach for solving IVPs with functions that are exponential as solutions. Different forms of -order ODEs must be derived using the modified system, and when the same issue is reduced to a  framework of equations that can be sol

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Modern Mathematical Sciences
Coupled Laplace-Decomposition Method for Solving Klein- Gordon Equation

In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.

Preview PDF
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Local and Global Uniqueness Theorems of the N-th Order Partial Differential Equations

In this paper, we consider inequalities in which the function is an element of n-th partially order space. Local and Global uniqueness theorem of solutions of the n-the order Partial differential equation Obtained which are applications of Gronwall's inequalities.

Crossref
View Publication Preview PDF