In this work the effect of annealing temperature on the structure and the electrical properties of Bi thin films was studied, the Bi films were deposited on glass substrates at room temperature by thermal evaporation technique with thickness (0.4 µm) and rate of deposition equal to 6.66Å/sec, all samples are annealed in a vacuum for one hour. The X-ray diffraction analysis shows that the prepared samples are polycrystalline and it exhibits hexagonal structure. The electrical properties of these films were studied with different annealing temperatures, the d.c conductivity for films decreases from 16.42 ? 10-2 at 343K to 10.11?10-2 (?.cm)-1 at 363K. The electrical activation energies Ea1 and Ea2 increase from 0.031 to 0.049eV and from 0.096 to 0. 162 eV with increasing of annealing temperature from 343K to 363K, respectively. Hall measurements showed that all the films are p-type.
Praise be to God, Lord of the Worlds, and prayers and peace be upon the Master of Messengers and his family and companions.
The study of the jurisprudential opinions of scholars, their choices, or their weightings, sheds light on the approach they followed in their choices, and reveals the originality of the scholar or his influence on those who preceded him from among the scholars.
And the commentators of the noble hadith of the Prophet have their important contributions in this aspect, as they undertake the task of explaining the noble hadith, the second source of legislation
Contemporary commentators have their share in the service of the honorable hadith, and the statement of their choices and preferences, and am
... Show MoreВ статье рассматривается вопрос о связи флективных изменений с мыслительными процессами на материале русского и арабского языков, анализируются семантические, фонетические, морфологические и синтаксические основы фонограмматической когниции. Цель статьи выявление прямой связи между количественным звуковым изменением согласного состава слова и мыслительными процессами, с помощью которых человеческ
... Show MoreIn this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.
In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreThe global food supply heavily depends on utilizing fertilizers to meet production goals. The adverse impacts of traditional fertilization practices on the environment have necessitated the exploration of new alternatives in the form of smart fertilizer technologies (SFTs). This review seeks to categorize SFTs, which are slow and controlled-release Fertilizers (SCRFs), nano fertilizers, and biological fertilizers, and describes their operational principles. It examines the environmental implications of conventional fertilizers and outlines the attributes of SFTs that effectively address these concerns. The findings demonstrate a pronounced environmental advantage of SFTs, including enhanced crop yields, minimized nutrient loss, improved nut
... Show MoreImage steganography is undoubtedly significant in the field of secure multimedia communication. The undetectability and high payload capacity are two of the important characteristics of any form of steganography. In this paper, the level of image security is improved by combining the steganography and cryptography techniques in order to produce the secured image. The proposed method depends on using LSBs as an indicator for hiding encrypted bits in dual tree complex wavelet coefficient DT-CWT. The cover image is divided into non overlapping blocks of size (3*3). After that, a Key is produced by extracting the center pixel (pc) from each block to encrypt each character in the secret text. The cover image is converted using DT-CWT, then the p
... Show MoreThe present work describes numerical and experimental investigation of the heat transfer characteristics in a plate-fin, having built-in piezoelectric actuator mounted on the base plate (substrate). The geometrical configuration considered in the present work is representative of a single element of the plate-fin and triple fins. Air is taken as the working fluid. A performance data for a single rectangular fin and triple fins are provided for different frequency levels (5, 30 and
50HZ) , different input power (5,10,20,30,40 and 50W) and different inlet velocity (0.5, 1, 2, 3, 4, 5 and 6m/s) for the single rectangular fin and triple fins with and without oscillation. The investigation was also performed with different geometrical fin
This paper presents a proposed neural network algorithm to solve the shortest path problem (SPP) for communication routing. The solution extends the traditional recurrent Hopfield architecture introducing the optimal routing for any request by choosing single and multi link path node-to-node traffic to minimize the loss. This suggested neural network algorithm implemented by using 20-nodes network example. The result shows that a clear convergence can be achieved by 95% valid convergence (about 361 optimal routes from 380-pairs). Additionally computation performance is also mentioned at the expense of slightly worse results.
In this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show More