This paper including a gravitational lens time delays study for a general family of lensing potentials, the popular singular isothermal elliptical potential (SIEP), and singular isothermal elliptical density distribution (SIED) but allows general angular structure. At first section there is an introduction for the selected observations from the gravitationally lensed systems. Then section two shows that the time delays for singular isothermal elliptical potential (SIEP) and singular isothermal elliptical density distributions (SIED) have a remarkably simple and elegant form, and that the result for Hubble constant estimations actually holds for a general family of potentials by combining the analytic results with data for the time delay and by using the models of distances.
In our work present, the application of strong-Lensing observations for some gravitational lenses have been adopted to study the geometry of the universe and to explain the physics and the size of the quasars. The first procedure was to study the geometrical of the Lensing system to determine the relation between the redshift of the gravitational observations with its distances. The second procedure was to compare between the angular diameter distances "DA" calculated from the Euclidean case with that from the Freedman models, then evaluating the diameter of the system lens. The results concluded that the phenomena are restricted to the ratio of distance between lens and source with the diameter of the lens noticing.
Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing. So we present a simple model for strong lensing in the gravitational lensed systems to calculate the age of four lensed galaxies, in the present work we take the freedman models with (k curvature index =0) Euclidian case, and the result show a good agreement with the other models.
Some relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.
Let R be a semiprime ring with center Z(R) and U be a nonzero ideal of R. An additive mappings are called right centralizer if ( ) ( ) and ( ) ( ) holds for all . In the present paper, we introduce the concepts of generalized strong commutativity centralizers preserving and generalized strong cocommutativity preserving centralizers and we prove that R contains a nonzero central ideal if any one of the following conditions holds: (i) ( ) ( ), (ii) [ ( ) ( )] , (iii) [ ( ) ( )] [ ], (iv) ( ) ( ) , (v) ( ) ( ) , (vi) [ ( ) ( )] , (vii) ( ) ( ) ( ), (viii) ( ) ( ) for all .
In this paper, we introduce the concept of generalized strong commutativity (Cocommutativity) preserving right centralizers on a subset of a Γ-ring. And we generalize some results of a classical ring to a gamma ring.
In this study, we prove that let N be a fixed positive integer and R be a semiprime -ring with extended centroid . Suppose that additive maps such that is onto, satisfy one of the following conditions belong to Г-N- generalized strong commutativity preserving for short; (Γ-N-GSCP) on R belong to Г-N-anti-generalized strong commutativity preserving for short; (Γ-N-AGSCP) Then there exists an element and additive maps such that is of the form and when condition (i) is satisfied, and when condition (ii) is satisfied
In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
This paper discusses reliability of the stress-strength model. The reliability functions ð‘…1 and ð‘…2 were obtained for a component which has an independent strength and is exposed to two and three stresses, respectively. We used the generalized inverted Kumaraswamy distribution GIKD with unknown shape parameter as well as known shape and scale parameters. The parameters were estimated from the stress- strength models, while the reliabilities ð‘…1, ð‘…2 were estimated by three methods, namely the Maximum Likelihood, Least Square, and Regression.
A numerical simulation study a comparison between the three estimators by mean square error is performed. It is found that best estimator between
... Show MoreThis work aims to investigate the dependence of gravitational lensing properties on the lens redshift and source redshift.
The angular diameter distance hereafter referred to as ADD has been determined using two different numerical integral methods, Simpson's rule, and definite integral methods. Both of those two methods gave identical results. In addition, observational data of gravitational Lensing systems have been used to find the most probable value of lens redshift and source redshift. The result showed that the lens redshift and source redshift are more likely to occur in the ranges of zL=0.2-0.6 and zS=1-3, respectively.
Einstein radius and the critical surface mass density
... Show More