Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.
In this paper, as generalization of second modules we introduce type of modules namely (essentially second modules). A comprehensive study of this class of modules is given, also many results concerned with this type and other related modules presented.
Let R be a commutative ring with identity. R is said to be P.P ring if every principle ideal of R is projective. Endo proved that R is P.P ring if and only if Rp is an integral domain for each prime ideal P of R and the total quotient ring Rs of R is regular. Also he proved that R is a semi-hereditary ring if and only if Rp is a valuation domain for each prime ideal P of R and the total quotient Rs of R is regular. , and we study some of properties of these modules. In this paper we study analogue of these results in C.F, C.P, F.G.F, F.G.P R-modules.
Let R be a commutative ring with unity. And let E be a unitary R-module. This paper introduces the notion of 2-prime submodules as a generalized concept of 2-prime ideal, where proper submodule H of module F over a ring R is said to be 2-prime if , for r R and x F implies that or . we prove many properties for this kind of submodules, Let H is a submodule of module F over a ring R then H is a 2-prime submodule if and only if [N ] is a 2-prime submodule of E, where r R. Also, we prove that if F is a non-zero multiplication module, then [K: F] [H: F] for every submodule k of F such that H K. Furthermore, we will study the basic properties of this kind of submodules.
Let R be a commutative ring with unity. In this paper we introduce and study the concept of strongly essentially quasi-Dedekind module as a generalization of essentially quasiDedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind module if ( , ) 0 Hom M N M for all semiessential submodules N of M. Where a submodule N of an R-module M is called semiessential if , 0  pN for all nonzero prime submodules P of M .
Let M be an R-module. We introduce in this paper the concept of strongly cancellation module as a generalization of cancellation modules. We give some characterizations about this concept, and some basic properties. We study the direct sum and the localization of this kind of modules. Also we prove that every module over a PID is strongly module and we prove every locally strong module is strongly module.
In this paper we introduce the notions of t-stable extending and strongly t-stable extending modules. We investigate properties and characterizations of each of these concepts. It is shown that a direct sum of t-stable extending modules is t-stable extending while with certain conditions a direct sum of strongly t-stable extending is strongly t-stable extending. Also, it is proved that under certain condition, a stable submodule of t-stable extending (strongly t-stable extending) inherits the property.
In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
Abstract
In order to determine what type of photovoltaic solar module could best be used in a thermoelectric photovoltaic power generation. Changing in powers due to higher temperatures (25oC, 35oC, and 45oC) have been done for three types of solar modules: monocrystalline , polycrystalline, and copper indium gallium (di) selenide (CIGS). The Prova 200 solar panel analyzer is used for the professional testing of three solar modules at different ambient temperatures; 25oC, 35oC, and 45oC and solar radiation range 100-1000 W/m2. Copper indium gallium (di) selenide module has the lowest power drop (with the average percent
... Show MoreLet R be a ring with identity and M be a right unitary R-module. In this paper we
introduce the notion of strongly coretractable modules. Some basic properties of this
class of modules are investigated and some relationships between these modules and
other related concepts are introduced.
Let R be a commutative ring with non-zero identity element. For two fixed positive integers m and n. A right R-module M is called fully (m,n) -stable relative to ideal A of , if for each n-generated submodule of Mm and R-homomorphism . In this paper we give some characterization theorems and properties of fully (m,n) -stable modules relative to an ideal A of . which generalize the results of fully stable modules relative to an ideal A of R.